AL, b
g W ':" N Wi y H X e
o h N

- 5 R !
t‘ﬁ?&ﬁuiaﬂp?@ PRIMOS REV. 19 ROAD SHOW
FIME : 2 Days '
MATERIAL: Supplied
OBUECTIVES:

UPON COMPLETION OF THIS COURSE THE STUDENT SHOULD BE ABLE TO:

1. Install PRIMOS rev. 19 at customer sites
2. Describe and implement User profiles on a customer machine.
o Describe and install ACCESS.CONTROL_LISTS on a customer machine.
4. Describe and install DISK QUOTAS on a customer machine.
o Use the new FIX DISK command to convert a disk to rev. 19.
67 Explain the new BADSPOT handling feature.
— '> 74 Explain the new BOOTSTRAP procedure.
HB. Use thé new FUTIL REPLACEMENT commands.
a. COPY b. DELETE
c. LIS DIRECTORY d. RWLOCHK
e. PROTECT
il Describe the new COMMAND PROCESSOR functionality
a. Wildcarding b. Iteration
c. Name Generation a. T vee wanmng

L]

iO. Describé briefly, the INTERNAL modifications

11. Rebuild prim:s by invoking the supplied command files.
12. Describe the rev. 19 NPX Feajuras.

13. Explain the REMOTE JOB ENTRY enhancements

14, Define the changes to DBMS. w

-
g;’“* 15. Describe the Temaining changes to PRIMOS rtev. 19.

10.

13-

12.

13.

14.

15.

16.

REV19 ROAD SHOW OUTLINE

INTRODUCTION

A. NEW FEATURES

USER PROFILES

A. TERMS B.

DISK QUOTAS
BADSPOT HANDL ING
FIX_DISK

NEW BOOT STRAP PROCEDURE

ACCESS CONTROL LISTS

FUTIL REPLACEMENT COMMANDS

A. COPY B.
C. LIST_DIRECTORY D.
E. PROTECT

COMMAND PROCESSOR

A. WILD CARDING B.

C. NAME GENERATION V.

INTERNAL MODIFICATIDONS

A. QU{T$ g.
C. EPFs D.
RESOURCE EXTENSIONS
PRIMOS BUILD CPL FILES
CONVERTING TO PRIMOS REWV.
NP X

RJE

DBMS

REMAINING REV19 PRODUCTS

DELETE

RWLOCK

ITERATION
T\reduaikinG
LOGOUT NOTIFICATION

LOGIN CHANGES

1

B

AM

PM

- - - - -—— - - - —— - - [- -

REV. 19 ROAD SHOW DAILY TOPIC MAP
DAY 1 DAY 2

INTRODUCTION
USER PROFILES
DISK QUOTAS
BADSPOT HNDLG
FIX_DISK

CONVERSION

)
]
i

- ey o _— [_— —

LUNCH

BOOTSTRAPPING
FUTIL REPLACEMENT

i CONVERSION
COMMAND PROCESS. i RJE

NP X

PRIMOS BUILD DBMS

- - —— —— —— - - -~ — [— [—— - ——

PRIMNOS - Revision 19.0

= SECURITY

USER PROFILES
ACCESS CONTROL LISTS
DISK GUOTAS

EASE of USE

COMMAND PROCESSOR ENHANCEMENTS
FILE UTILITY COMMANDS
v INTEGRITY
FIX_DISK
 IMPROVED BADSPOT HANDLING
 MISCELLANEOUS ENHANCEMENTS
INTERNAL CHANGES

PRIMOS REV. 19 NEW FEATURES

ACCESS CONTROL LISTS
ASSIGNABLE AMLC LINE IMPROVEMENTS
BADSPOT HANDLING
COMMAND PROCESSOR EXTENSIONS
CPL PHANTOMS
CROSS PROCESS SIGNALLING (Internal use only)
DISK GUOTAS
EXECUTABLE PROGRAM FORMAT (Internal use only)
FILE SYSTEM UTILITY
FIX DISK

ENHANCED FORCEW PRIMITIVE

PRIMOS REV. 19 NEW FEATURES

THE HELP COMMAND
STATIC ON UNITS (Internal use only)
STATUS COMMAND CHANGES
MPC4 SUPPORT
USER PROFILES
NEW ERROR CODES
PRIMOS INTERNAL LOGIC MODIFICATIONS
CORRECTED REV. 18 POLERS

NEW FEATURES FOR APPLICATIONS PROGRAMS

Asynchronous Siqnals

- Rev 18: quit$ user break, control-p
cpu_timer$ cpu seconds watchdog timer (see limit$)
alarm$ real time seconds watchdog (see limit$)

- New signals at rev 19:

logout$ 1-2 minute warning before force logout
ph _logo% g user initiated phantom has logged ouf
cps cross process signals (nof released)

- Break$ routine only disables quits,

- Ta insure atomic code, create condition handlers for all
asynchronous signals, or use SWSINT (documented below).

NEW FEATURES FOR APPLICATIONS PROGRAMS

SWSINT (KEY, SELECTION, VALUE, ERCODE [, OUTER_RINGI)

NOTE: This is an unreleased call. The calling sequence and/or
fuctionality is subject to change. If 1s documented here
to provide a simple mechanism to control asynchronous
signals by third-party sub-system soffuare.

SWSINT is used to control the enable/disable status of the
software interrupts. If does this by setting/resetting the
enable bit(s) of the software interrupt ring control words
located in pudcom. (For terminal quit, BREAKS is called to
enable/disable.) The format of this word is:

dcl 1 b swityp based,
2 mbz bit(10),

2 logout bit(l), /% logout condition #/

2 cps bit(l), /% cross process signalling #/
2 cpu _time bit(l), /% cpu timer #/

2 alarm bit(1), /% real time timer #/

2 lon bit(l), /% phantom logout #/

2 terminal bit(l); /% terminal quit #/

NEW FEATURES FOR APPLICATIONS PROGRAMS

SWSINT (continued)

SWSINT is able to set on, set off, or simply read the status of
the interrupt tupe chosen by its caller. The type is chosen by
either setting a bit(s) on in the input arqument, SELECTION,
or using one of the "all" keys. For read, the current setting
is returned in the argument, VALUE.

The valid keys for specific bit selection(s) are:
k$on - turn interruptis) on
k$0ff - turn interrupt(s) off
k$rdon - read present status then turn interrupt(s) on
k$rdof - read present status then turn infterrupt(s) off
k$read - read present stafus

The valid key for non-specific bit selection are:
k$alon - turn on all inferrupts
k$alof - furn off all inferrupts
k$raon - read all status then furn on all interrupts
k$raof - read all status then turn off all inferrupts
k$rdal - read present status of all interrupts

o

NEW FEATURES FOR APPLICATIONS PROGRAMS

SWEINT (continued)

A user may enable/disable any inferrupf(s) in an oufer ring by
including the aptibnal QUTER RING arqument. If 1f 15 included
it’s value currently must be J. Soffware inferrupts are
normally on in the outer rings.

Abnormal conditions: Bad key. Bad paramefer. Buffer foo
small.

NEW FEATURES FOR APPLICATIONS PROGRAMS

Command Processor

- Static mode programs all features enabled, no verify for _
wildcard selections is the default. Lo stakie tede prqrams

—

- CPL programs only simple iteration enabled.
- NX$ ___ only simple iteration enabled.
- NW%__ only freewalking enabled.
- Special command processor arguments:
Wildcarding:. ~before, -after, -file, -directory, -acat

-seqment directory, -verify, -no_verify
Treewalking: -walk from, -walk _to, -bottom_up

NEW FEATURES FOR APPLICATIONS PROGRAMS

Attach-5can

- All local disks are searched before all remote disks
(in ldev order).

- If user does nof have Use access to the MFD, then that partition
15 not searched.

—

- If the user does not have List access to the MFD and does not
have sufficient access to the UFD, then the search continues
(becuase ‘no information’ 1is returned).

- Search stops on any ‘bad password’ and ‘insufficient access rights’

- New error code ‘Top-level UFD inaccessible or not found’.
‘Not found’ will never be returned by an attach scan af rev 19.

Disk Guotas

- Quota checking can be performed by the programs and appropriate
actions taken (i.e. closing files, trying other UFDs).

- New error code ‘Maximum quofa exceeded’.

NEW FEATURES FOR EXTERNAL LOGIN

- During login, CMDNCOZLOGIN is resumed. (,SAVE suffix not allowed)

- During logout, CMDNCOYLOGOUT is resumed if it exists
else CMDNCOZLOGIN.

- Login-over-Login is defined as:

Rev 18: change of user 1d (no aﬁcaunting meters reset)
% Rev 19. logout followed by login

- New features at rev 19

Project Name: prjid$ returns name of user’s login project

ACL Groups: getid$ returns ACL groups {(and user _id) |

Disk Quotas: check for free records before writing accounting
or mefering files

Disk Usage: qsread returns record-time-product meter to account
for disk usage over time within a quota sub-tree.

- LOGIN. @ (CPL, COMI, SAVE) is resumed from user’s initial attach
point following execution of external login program.

SUBJECT: USER PROFILES and ACLS

TIME

2 and 1/2 HOURS

MATERIAL: SUPPLIED

OBJECTIVES:

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO:

p £

10.

11

DESCRIBE AN ACCESS CONTROL LIST
a. ACCESS CATEGORY b. SPECIFIC ACL
c. DEFAULT ACL
USE THE SET_ACCESS COMMAND TO PROVIDE ACL PROTECTION ON THE
FILE SYSTEM.
DEFINE AND USE THE PRIORITY ACL
EXPLAIN HOW TO CONVERT TO AN ACL DIRECTORY.
DESCRIBE THE USER PROFILE MECHANISM
DESCRIBE THE CONCEPT OF PRDUJUECTS
INVOKE AND USE THE EDIT_PROFILE UTILITY TO ADD USERS:. PROJECTS
AND ACL GROUPS TO THE SYSTEM.
DESCRIBE A DEFAULT PROJECT
DEFINE THE ROLES OF A SYSTEM ADMINISTRATOR, PROJECT ADMINISTRATOR.
EXPLAIN WHAT A PROFILE IS AND HOW THEY CAN BE USED AT EACH SITE.

ACTIVATE REMOTE USERS OF THE SYSTEM BY REGISTERING REMOTE IDs,

DEFINITIONS

‘ACCESS CONTROL LISTS

ACCESS GROUP NAMES

USER PROFILES

USER 1D

USER REGISTRATION

FROJECT

INITIAL ATTACH POINT

ACCESS CONTROL LISTS - MOTIVATION

[PASSwoncs Hre RAcTive AT €AcH DOl2 HiTacy

- To improve file system security. s PAsswe

- To provide an easy o use interface for user’s and programs
to sef and modify access.

- To interact with user profiles to provide common access for
specified qroups of users under adminisfrative control.

- To provide an exfensible system for the specification/
enforcement of access rights.

- Passive protection mechanism versus passwords which must
be specified by users/programs.

ACCESS CONTROL LISTS

- New profection mechanism to control access to files and
directories. Alternative fo the current password scheme.

- An Access Control List (ACL) 15 a list of users and access
rights to one or more files/directories.

Romeg . T (Romeo may read files)

Juliet . ru (Juliet may read and wrife files)

Muppet: | (The group of users ‘.muppet’ may list
the contents of the ufd)

$rest : none (A1l other users have no access)

ACLs may be specified for a single file or a sef of files.

- ACLs are enabled on a per-mfd basis. Password direcfories can
be subordinate to ACL directories not vice versa.

- Like user profiles, ACLs default to closed. A user nust
specifically be given access - NONE is defaulf.

- Requires rev 19 disk formaf.

ACCESS CONTROL LISTS

An access pair consists of:
(identifiers : <access_rights’

Identifier

The identifier may be
- A yser_id contained in the user profile data base

- An ACL qroups which is a special name that begins with a “. ' and
specifies a group of users which share common access rights.
For example,
 MUPPET specifies WKERMIT
MISS PIGGY
FOZZIE BEAR
(ACL qroups are specified in a user's profile.)

- The special identifier ‘$rest’ which signifies all other users.

4

Access Riahts

RIGHT

Protect
Delete
Add
List
Use
Read
Write
ALL
NONE

APPLIES

Direcfories
Directories
Directories
Directories
Directories
Files

Files

Both

Both

ACCESS CONTROL LISTS

MEANING

Accesses and attributes may be changed.

Entries may be deleted from the dir.

Entries may be added to the dir. ., . .
The contents of the dir may be read. o
The dir may be attached fo.

The file contents may be read.

The file contents may be changed.

PDALURWX.

Explicitly deny all access.

ACCESS CONTROL LISTS

Useful Combinations of Access Rights

u.

1u:

lur:

lura:

lurwad:

all:

none:

Required for the user to access anything at this directory
level or below. Allows the user to attach.

Allows the user to attach and display the names of file
system objects.

A good combination for trusted users. Allows user to'
peruse a directory and ifs contents, and fo make coples.

Allows the user to also create new files and directories
in a non-desfructive manner. Episting files cannof be
changed.

A qood combination where access is controlled by an
administrator, but allows the user to do ‘everything’ -
read and write files, add and delets entries. The user

cannot change the profection on any object.

A standard combination for the system administrator or
‘owner’ of an object. Allows protection to be changed,
and disk quotas fo be sef.

Prevents all access.

ACCESS CONTROL LISTS - Calculating Access

WHEN IS ACL ACCESS CHECKED?
- During an affach operation

- During a file open operation

Acc ,VWT/A/W,@%W ot alsch, ij

ACCESS CONTROL LISTS - Calculating Access

HOW IS ACL ACCESS CALCULATED?

- Password owner/non-ouwner access rights are mapped to ACL rights:

Owner: e PDALU
Non-guner: = LU
Read: = R
Weite: = W
Delete: = D

- Calculate access as follows:

Priority Access: if priorify acl then
1f user_in pacl then
get access from pacl

User Id: else if user_id in acl then
get access from acl
ACL Groups: else 1f user_member of group(s) then

qget access for each member group
logical-or these accesses fogether

fRest: glse if $rest then
get access from $rest pair

else no access

ACCESS CONTROL LISTS

There are fwo kinds of ACLs: specific and cafegory.

Specific Protection

There is a unique acl associated with a single file/directory.
The acl is accessed through the name of the object 1t protects.

AL i Foo a8t o3
i : ar E :
i my. ufd Ve tLig
set access my. ufd <acly set access a file Zacly

\]
ST

ACCESS CONTROL LISTS

Cateqory Protection

There 1s a file system object called an access cateqory that
protects one or more files/directories. The acl is accessed by
the name of the access category. When the access category is
modified, the access rights for all the files/directories
protected by the acl are changed.

i UITiVate aLat - eeems=ana i notes.ufd |

| m—— i Teview. file |

peesa] BESl0g Sl

set access private, acat 4acl’

ACCESS CONTROL LISTS

Default Protection

If no specific or cafegory protection is specified, then the
file/directory is profected by the acl associated with the
parent directory. New files are profected by default acl.

i SAEL

my. ufd

- P -

i ojunk. ufd | i memo. file |

set_access my. ufd <acls

ACCESS CONTROL LISTS
NEW AND MODIFIED COMMANDS

SET ACCESS, SAC <target pathname’
“target pathname’ <access_confrol_lists
(target pathname) -LIKE (referencey *or o=t fiefcls
(target pathname> -CATegory <access_cateqoryr

{target pathname’
Pathname of file, directory or access cateqory to profect.

caccess control list?
A list of access pairs - 4identifier:<access_rights2,

{reference’
Pathname of a file, directory or access_category,

“access categorys
Name of an access cateqory. Supported suffix is ', acat’.

- Used to set ACL protection for <farget_pathname.
- If {tarqet pathname> is a password directory, convert fo an acl
direcfory.

ACCESS CONTROL LISTS
NEW AND MODIFIED COMMANDS

- If only <target pathname> is specified, then defaulf access is
inheritaﬁ. In this case, target may not be a mfd.

- Protect access is required for the directory; or the directory
containing the file or access cateqory.

- 1f not otherwise specified, $rest:none is implicit in every acl.

EDIT ACCESS, EDAC {target_pathname}'{access_contral_list}
~ = Used to modify/create an acl.

- The access pair for each new identifier in the is added fo
the farget’s acl. -

- Each existing idenfifier has ifs access changed in the
farget’s acl to be the specified access pair.

- If an access pair 1s specified with no access rights, that
access pair will be delefed from the target’s acl.

ACCESS CONTROL LISTS
NEW AND MODIFIED COMMANDS

LIST ACCESS, LAC [<{fargef pathname.]
- Used to list the acl protecting <targef pathname..

- If <target pathname> is omitted, then the acl protecting
the current atfach point 15 listed.

- If a priorify acl is in effect, then it is listed first.

- List access is required to the directory that contains
the protecfed farget.

REVERT_PASSWORD

- Used to convert an acl directory back £o a password directarq,

- Converts the current directory back to 3 password directory.

- Profect access 1s required.

ACCESS CONTROL LISTS
NEW AND MODIFIED COMMANDS

SET_DELETE, SDL <pathname> {-PROTect | -NoPROTect}

<pathname’
Name of file or directory to protect.

-PROTact
Set delefe switch to prevent deletion.

-MoPROTect

Permit deletion.
- Used to profect <pathname’ from accidental deletion.
- Delete access 1s required to set the delete switch.

- The switch cannot be used on access categories.

ACCESS CONTROL LISTS - Directory Structure

- A directory 1s a header followed by a bunch of entries.

- ACLs are embedded in the directory itself.

Directory Header

File
Entry

hole

Directory

|
|
: ACL
|
| Entry

-—— — - —— - —_— —— —— —— —— ——

-

ACCESS CONTROL LISTS - Directory Structure

DIRECTORY ENTRY TYPES:
- Directfory Header
- Vacant Enfry: Unused hole in the directory.

- Normal Enfry: Describes a file: SAM
DAM
SEGSAM
SEGDAM

or a directory: ACL
Passuord

- ACL Entry: Sef of access pairs.

- Access Cateqory: MNamed ACL. Always points to an ACL entr%r-ea‘

\J

ACCESS CONTROL LISTS - PRIORITY ACLS

- Mechanism to allow the system administrator or operations staff
to set special overriding access on the file system e.g. for
backups.

- A priority acl may be specified from the system console for any
partition on the system.

- The priority acl is checked first when computing a user’s access
rights.

- The %rest.none access pair is not implied in a priorify acl.

R, e -

ACCESS CONTROL LISTS - PRIORITY ACLS

SET PRIORITY ACCESS, SPAC <partition name> <access control listo
- Sets a priority ACL on a partition.

- If $rest identifier is gqiven as part of <access control listl
then the access rights given by that id override any other
access control in effect on the parfition.

- Can only be executed from the system console or by the
system administrator,

LIST PRIORITY_ACCESS, LPAC <partition_name’

- Lists any priorify acl on the partition. Should only be used
when List ACcess cannot be used.

REMOVE PRIORITY ACCESS, RPAC <parfition_name, %

- Removes the priorify acl on the parfition.

- Can only be executed from the system console or by the
system administrator,

STRATEGY FOR PROFILES, ACLS, QUOTAS

Utilizing ACLsS

~--Protect files and directories

- Allow the setfing of disk quotas. Protect access fo
the parent directory allows imposing quofas on subdirs.

SA may control top-~level quotas.
PA may control quotas on sub-directories.

- Allow installation of new commands/libraries. Add
access 1s required to CMDNCO or LIB fo add new files.
Note, delete access is also required to COPY in 3
new version of an existing file.

- May prevent execution of certain external commands. Any
command in CMDNCO can be ACL'd to prevent read
access to any user or qroup of users. This prevents
gyecution of the command.

- Allow reversion of a password directory to an ACL
directory requires profect access fo the ufd,

STRATEGY FOR PROFILES, ACLS, GQUOTAS

Utilizing ACLs

- The SA/PA may want to prevent a user from changing the ACL
access to his/her initial attach point, but still allow
the user to specify ACLs for any sub-directories of the 1iap.
This is useful to force some minimal access to a user’s ufd
say for the PA or project members.

pa:all
i project_alpha | user: u cannot change ACLs here
alpha:u
--------- pa.all
i User user:all cannot change ACLs here
S .alpha: lur
/ \
ifile; P 417 can assign ACLs here

- If a user does not have profect access to his/her
ufd, then no ACLs can be assigned to any files or
sub-directories. This is useful in a tightly controlled
system where the SA or PA wants full control (at a cost
of more administrative work).

STRATEGY FOR PROFILES, ACLS, GUOTAS

Usefyl Combinations of Access Rights

lu;

lur:

lura:

lurwad:

all:

none:

Required for the user to access anything at this directory
level or below. Allows the user to attach.

RMEMBLZ ~usT Be "W U Supsrion Din T AW usén T SET o
Acl'A,
Allows the user to attach and display the names of file

system ob jects.

A qood combination for trusted users. Allows user to
peruse a directory and its contents, and fo make copies.

Allows the user to also create new files and directories
in a non-destructive manner. Existing files cannot be
changed.

A good combination where access is controlled by an
administrator, but allows the user to do ‘everything’ -
read and write files, add and delete entries. The user
cannot change the protection on any object.

A standard combination for the system administrator or
‘ouner’ of an object. Allows protection to be changed,

and disk quotas to be sef.

Prevents all access.

STRATEGY FOR PROFILES, ACLS, QUOTAS

Utilizing ACL Groups

- Can be specified in 3 vuser’s system profile and/or project profilé.

- A user_id becomes a member of the ACL groups in his/her system
profile during every login, regardless of the project id.
These are often used for global system access. For example:

.Super_user = could give ALL access to system ufds

- A user_id becomes 3 member of the ACL groups in his/her project
profile only when logging into that project id. Oftentimes, a
project_id will have a corresponding ACL group. For example:

Project = Operations ACL Group = . Operafions

- ACL qroup access rights are additive. If a user is 3 member of
multiple qroups which are specified in a single ACL, the user
obtains the sum of the access rights for each group. For example:

Project Leaders: pd
Project Members: alurw
ANy user who is g both a leader and a member is granted all access.

- Note: Specifying the usr id can increase or decrease ACL access.

STRATEGY FOR PROFILES, ACLS, QUOTAS

Choosing a Sustem Administrator

- Most trusted person on the sysfem {(network).
- Has full access to every file in every directory.

- Must be able to understand user profile database structure,
and execute EDIT PROFILE to manage if.

N - Responsible for registering all users in the SAD, creating
projects, assigning PAs and defining valid ACL gqroups.

- Should be available fo solve any system problems/emergencies.

- The SA 15 a vser_id. To have multiple SA's creafe an 1d
and give multiple people fthe password.

— NKNCWLEDCE coF CuSremsre EMVIRCIMENT

STRATEGY FOR PROFILES, ACLS, GUOTAS

- The SAD (System Administrator’s Directory) is a database that
defines all processes/users who LOGIN to the system,

- The purpose of user profiles is fwo-fold:

control access of users enfering the system
define access rights of users on the system

- A user entering the system must specify:

the system the user wishes £o run on

the user id s/he 1s to assume on that system

any password validating the user_id (may be optional)

a project id affiliation (may be optional) |

- A user running on the system is identified by:

3 user 1id

a project id

an initial atfach point in the file system
a set of ACL groups

STRATEGY FOR PROFILES, ACLS, GUOTAS

Choosing Project Administrators

- Alds the SA in managing the SAD.

- Must be able fo understand project sfructure and execute a
subset of EDIT PROFILE commands to manage if.

- Can grant project mémbership to any user_1d reqistered in
the SAD by fhe SA.

- Can grant ACL qroup access to any member of a project s/he
administrates. (W ™M Groue Limws SET By =AD)

- PA is often an administrative assistent, group leader,
teacher, efc.

- Multiple persons managing the same project can be achieved
by creating a separate user_id, and gqiving out the password.

~

STRATEGY FOR PROFILES, ACLS, GUOTAS

Utilizing the Initial Attach Point

- Is the one ufd on the system the user must have some
access to (Use minimum),

- Jetting an iap two levels below the MFD makes it easier
to limit access (i.e. not a top-level UFD).

- Multiple users can share the same iap, hence the same:
login. @ and abbrevs.

STRATEGY FOR PROFILES, ACLS, QUOTAS

Projects

- Projects are a convenient mechanism to group together users
who have the similar file system access.

- They provide an accounting entity for external login programs.

- When a PA registers a user into a project, the following are
specified:

a set of project level ACL qroups (optional)
an initial attach point

- Note, every user must be a member of at least one project,

- Project ‘Default’ is easy to administrate.

Voo e
ANCTE LITM\TED T 20-30 PRo)eCTS

STRATEGY FOR PROFILES, ACLS, QUOTAS

Projects

- Projects are a convenient mechanism to group together users
who have the similar file system access.

- They provide an accounting entity for external login programs.

- When a PA registers a user into a project, the following are
specified:

a set of project level ACL qroups (optional)
an initial attach point

- Note, every user must be a member of at least one project.

- Project ‘Default’ is easy to administrate.

Voo Lo
ANCTE LIT\TED T 20-30 PRo)eCTS

STRATEGY FOR PROFILES, ACLS, GUOTAS

Utilizing the Project 1¢

- Projects are most useful for qrouping users together:
for accounting purposes
for functional organization
for common file system access

- Project level ACL groups are useful for granfing access

to certain sets of files for a certain fask.

Utilizing the Default Project

- Allowing a user to log into a default project provides
the convenience of nof typing the project id.

- Not specifying a project_id removes a level of securify.

- Currently cannot change project_id without logout.

STRATEGY FOR PROFILES, ACLS, QUOTAS

Decision: To use projects or not o use projects?
Projects:
- Requires pre-planning for the initial organization.

- Allows a project_id to be ‘charged’ by the external login
program for every user session.

- For systems with a large user community, allows management of
the user profile data base and file system access to be
delegated to a set of project administrators.

No Projects:

- Much easier to maintain the single default project.

- File access can still be qranted to qroups of users without
separate project affiliations.

STRATEGY FOR PROFILES, ACLS, GUOTAS

Users

- Users are phanfoms, terminal or remofe processes that log
into and vuse the system.

- Note: NETMAN, SYSTEM never login or have their usér_id
FUE TRAusFER PRLESS

changed during login, and need not be reqistered. _FTP needs
SYSTEM registered (changes vuser_id after login).

- When the SA reqisters a user, the following must be specified:

3 user id

a password (optional)

a set of system level ACL qroups (optional)
3 default login proyect (optional)

STRATEGY FOR PROFILES, ACLS, GUOTAS

Utilizing the User id

- Certain site-dependent information can be encoded in the user_id

such as employee number, class level, efc.
ftAsH ALGORITHM Wonrks Bemin WTh (0% of difleding length

- In a networked environment it is easier if each user has the
same uUser _id across all systems. :

- System level ACL groups are a function of the user_id. The user
obtains this access regardless of the project logged into. They
are useful for qranfing access to system resources.

Utilizing the Password

- Password validates the user id.

qu b\bl...'\cl NO - NWLL SwiiCy

- The SA can force that each user has a password. \a €iit Prsswens

- No one can see a password, only SA and user can change it.

USER PROFILES

There are two mechanisms for controlling/moniforing a user:

ACL Groups
Projects

ACL Groups

- Mechanism o group users for file system access purposes.
- Very general, ACL group is a set of user_ids.

- Can be used in 3 hierarchical manner, e.q.
.student: alur
.teacher: dalurw

.deparfment:all

- Convenient mechanism to give a new user certain access to the
system. Simply add that user to the ACL group.

USER PROFILES

PROFILE: "Parameters of a user’s operating characferistics
which create a unique environment for that user®

Sustemlﬁttributes

Usereily 22 S
User Login Password
Default Project O woue Specihed o loewd)

Maximum 16 ACL Groups
Date/Time of Last Login

(’b’\{s:ru« KSpeN) STRATIRS DATRBASE)

- ALl users must be registered in the SAD (user profile data
base) before they can login.

- Each user id is unique. The system administrator must insure
yniqueness befween ‘friendly’ systems.® were Nemotau mvPucaTn

- The system administrator may specify that each user_id must
have a non-null password associafed with if.

+ The system administrator maintains the data base with the
edit profile command.

- Defaults to a CLOSED system which ensures all users must be
reqistered before login can occur

USER PROFILES

Projects

- Mechanism to group users for accounting purposes.
- Very general, project is a set of user ids.
- Allows system administration fask to be sub-divided.

- Users must belong to at least one project, but may belong to many.

~—

USER PROFILES

Project Attributes

Maximum 16 ACL Groups
Initial Attach Point

- Project limits are set by 5A. This consists of a list of
ACL qroups the PA may specify for ifs users.

- PA cannot add a new user to the system, only to a project.

- The project administrator maintains the project data base
with the edit profile command. The PA need not be a member
of the projects s/he manages.

USER PROFILES

Decision: To use projects or not to use projects?
Projects:
- Requires pre-planning for the initial organization.

- Allows a project id to be ‘charged’ by the external login
program for every user session,

- Project 1d can be based on:
Accounting Entity: department, branch, class
Session Activities: administrative, programming, data entry

- For systems with a large user community, allows management of
the user profile data base to be delegated to a set of project
administrators.

No Projects:
- Much easier to mainfain the single default project.

- File access can still be granted to groups of users without
separate project affiliations.

USER PROFILES

Decision: How to use ACL groups?
- Can be specified in a user’s system profile and/or project profile.

- A user_1d becomes 3 member of the ACL groups in his/her system
profile during every login, reqardless of the project id.

- A user_id becomes a member of the ACL qroups in his/her project
profile only when logging into that project id.

- oystem based ACL qroups are an atfribute of the user id.

- Project based ACL groups are an atfribute of the project id.

USER PROFILES
NEW AND MODIFIED COMMANDS

LOGIN <user id> [{password>] [-ON <system>] [-PROJect <project id>]

fuser _1d> <password
If either is missing, they are prompted for.

~sproject 1d2
If missing, then the default project for the user_id 15 used,
otherwise if is prompted for.

LOGOUT

- CMDNCO>LOGOUT 1is resumed if 1t exists, else CMDNCOZLOGIN.

LIST GROUP, LG
- List ACL groups the current user belongs fo.

S RosE e e SJS e n & .
PRAOFILE A DY ECLPY FDUE OF ZHSsw> OM PRauPi Lids
INSTERD CF Cos IN LiINS

L
‘-._/.U"

USER PROFILES
NEW AND MODIFIED COMMANDS

ORIGIN, OR

- Attach to initial atfach point for project user is logged info.

CHANGE PASSWORD, CPW <old password”

- Change login password for my user_id. New password 15 requested.

USER PROFILES - GLOBAL OPTIONS

Some qlobal options may be selected when the SAD is
initially created.

Non-ACL SAD
A SAD may be created on a non-ACL disk.
There 1s little protection of a non-ACL sad.
Only the special project 'DEFAULT' may be created.

Projects
Projects need not be creafed.
If no projects created then special project 'DEFAULT must be.
All users will belong to project DEFAULT.

ACL groups
A group may be associated with a user:
Regardless of project (system-wide groups),

- Because of project (project based groups),.
Or both.

USER PROFILES - EDIT_PROFILE

Utility used to maniplulate SAD.

Runs in three modes:
Initialization mode,
System administrator mode,
Project administrator mode.

Many commands with many options.

Allows ‘rebuild’ fo compress/extend files.

USER PROFILES - EDIT PROFILE

— The following table 1ists the commands which the
profile editor accepts, along with a list of fheir
respective arguments and option names. Capital
letters in the names show the abbreviations, e.g. "AU"
is the abbreviation for "Add User." For more defailed
information about each command, type "HELP <command name>."

Command name Argument Opfions
Add Project project -PA, -CReate pa, -SILE
-No_Query, -LIKE
Add User user -LIKE, -PROJect, -PROFile, -No_Query
-SYStem -DeFaulT '
a ~Passhord, -Verify NS
ATtach Project project none
Change Project project =PROFile, ~SliE, =L1S1
-PA, -LIMits
Change Sysfem Administrator
SA name -ADD
Change _User user -PROJect -LIST
-5Y5tem -PassWord
ConVert ACL none -5YStem, -PROJect, -BOTH
Delete Project project nane

"
N

Delete User
DeTach Project
Force PassWord
HELP

List Project

List System

List User

No Null PassWord
REbuild

set Project Groups
Set System Groups
Verify User

=~ —_
N
e

User
project
none
command

project

none

User
none
none
none
nane
User

4 -
_Uer %Lﬂr_fzgcﬂcﬂ o e

-PROJect

none

-0N, -OFF

none

-PROFile, -USER, -ALL

-0UTput, -TTY, -APPend

-USers, -GRoups, -PROJects, -ALL
-0UTput, -TTY, -APPend

-DETail

- -PROJect, -ALL

-ON, -OFF
-PROJect, -SIZE
-0N, -OFF

-ON, ~OFF

-ALL

EDIT PROFILE
Profile editor [rev 19.0] in initialization mode 02 Aug 82 09:33: 56.
SAD does not exist. Create it? YES
Do you want SYSTEM-uide qroups, PROJECT-based groups: or BOTH? BOTH
¥#% Creating User Validation File. Projected number of users: 44
System administrator = "SYSTEM".

Create project "DEFAULT"? YES

set system-wide attributes for user "SYSTEM":
" Password: ADMIN
Groups: . ADMIN
¥%% New qroup added fo system: ", ADMIN".

User Validation File created 02 Aug 82 09:36:40
92 entries in prime area; file is 5 records long.

Master Project File created 02 Aug 82 09:36:40
Master Group File created 02 Aug 82 09:36: 40

« Set limits for project "DEFAULT":
Groups. . USERS
#%% New qroup added to system: ".USERS".

Set attributes for user "SYSTEM" in project "DEFAULT":
Groups: .USERS

#%% New qroup added to project: ". USERS".
Initial attach point: {STAFFOUSERS

Seft profile atfributes for project "DEFAULT":

Groups: . USERS

Initial attach point: <STAFFJUSERS
Project "DEFAULT" created.

92 enfries in prime area; file 1s 3 records long.
Check entry? YES '

R e R et T R I R TR E TS
$EEEE
Project: DEFAULT Administrator: SYSTEM

One enfry in use out of 92

Master project limits:
Groups. . USERS

Project profile:
~ Groups: . USERS

Initial aftach point: <STAFF2USERS
§§§§#i%%%%%%ﬁﬁ%%*%%%%ﬁ%*%%%ﬁ%%*%%%*%%%%%%*%i&%%ﬁ*ﬁ%%ﬁ%%*%ﬁ%ﬁ**%**%%ﬁ%%%

$444%
Change entry? N

2 AU DOUG -PASSWORD SPORT -VERIFY NS

set system-wide attributes for user "DOUG":
Groups: . USERS

User "DOUG" added fo system.
Check entry? YES

L e e e e T
FE4%
System-wide attributes for user "DOUG":

Groups: . USERS

Defaulf login project: DEFAULT

Attributes for user "DOUG" in project "DEFAULT™:
Groups: <none’

Initial attach point: <none’
FE R R R R R R R R S S H SR RS B LRI RSB E 4SS

4]

Change enfry? AU DALE -PASSWORD COMM
Please answer YES or NO? NO
» AU DALE ~-PASSWORD COMM

Set system-wide atfributes for user "DALE™:
Groups. . USERS

User "DALE" added to system.
Check entry? NO
> AP DEVELOPMENT -PA DOUG -CREATE PA

set limits for project "DEVELOPMENT":
Groups: . PROGRAM
¥%% New qroup added to system: “. PROGRAM".

set attributes for user "DOUG" in project "DEVELOPMENT":
Groups: . PROGRAM
*%% New qroup added to project: ". PROGRAM".
- Initial attach point: <STAFF>DEVELOPMENT
Project "DEVELOPMENT" created.
20 enfries in prime area; file is 1 record long.
Check entry? YES

FEERERERLELRARREERERSLERELELHSEL LRSS EF AL RS RS EFESRERE RS RE RS LRSS ES2EEES

FeEEE
Project: DEVELOPMENT Administrator: DOUG
One enfry in use out of 20.

Master project limits:
Groups: . PROGRAM

Project profile;
Groups: 4<none’

Initial attach point: <{none>
FE R R R R R R R R R R R R R R R R R R E R R SRS RS R H 4%

$H44%
Change entry? NO
> ATP DEFAULT

> LS -ALL

SR T E e e e R R R R e R R e
FhEEE
System _ Administrator: SYSTEM

3 entries in use out of 92

System-wide groups enabled.

Project-based qroups enabled.

Non-DEFAULT projects exist.

FERRRERFERBE RS LA LR LR RS HES

4 %
Project section ¥
¥ ¥

FERREEREF LRSI R AL RS RESRFL RS2

Project. DEFAULT Administrator: SYSTEM
3 entries in use out of 92

Master project limifs:
Groups. . USERS

S—

Project profile:
Groups. . USERS
Initial attach point: <STAFFJUSERS

S S ES - CREBEEAS S SIS REENEELR RS S B
A

Project: DEVELOPMENT Administrator: DOUG
One entry in use out of 20.

Maéter project limits:
Groups. . PROGRAM

Project profile:
Groups. <nones
Initial atfach point: <none’

FEREEEERLEEEESL RS AL REELLRES

¥ %
% Group section %
% %

FhEEREEREREE R LS ERE XSRS RS

Group: . ADMIN
Group: . USERS

Group: . PROGRAM

FERERERSERARR SRS S S ERERESEEEES

¥ %
¥ User section %
4 %

FERRRRRREEFFFSSEREERERREEEE5S

System-wide attributes for user "DOUG":
Groups: . USERS
Default login project; DEFAULT

System-wide attributes for user "SYSTEM":
Groups: . ADMIN
Default login project: DEFAULT

System-wide attributes for user "DALE™:
Groups. .USERS

Default login project: DEFAULT -
FERR R R R R R R R H S S H S AR SRR EFH R L RIS RS 555

$E344
i

> FPW -ON

> HELP

The following table lists the commands which the

~ profile editor accepts, along with a list of their
respective arguments and option names. Capifal
letters in the names show the abbreviations, e.g. "AU"
i5 the abbreviation for "Add User." For more defailed
information about each command, type "HELP {command nameJ."

Command name Arqument Options
Add Project project -PA, -CReate pa, -SIZE
-No_Query, -LIKE
Add_User User -LIKE, -PROJect, -PROFile; -No Guery

-5YStems, -DeFaulT
-Passhord, -Verify NS

=~ ATtach Project project none
Change Project project -PROF118) =51IE, -LISI
| -PA, -LIMits
Change System Administrafor
SA name -ADD
Change User User -PROJect ~-LIST
-5YStem -Passhord
ConVert ACL none -5YStem -PROJect, -BOTH
Delete Project project none
Delete User User -PROJect
DeTach Project project none
Force Passhord none =0N, -OFF

Nt HELP command none

List Project project -PROFile, -USER, -ALL
-0UTput, -TTY, -APPend

List System none -USers, -GRoups, -PROJects, -ALL
~0UTput, -TTY, -APPend
-DETail

List User User -PROJects -ALL

No Null PassWord none -ON, -OFF

REbuild none -PROJect, -SIZE

Set Project Groups none =0N: ~OFF

Set System Groups none -0N, -OFF

Verify User User -ALL

> NNPW ~ON

> ATP DEVELOPMENT

7 LS -ALL

e S e S R S e L
HEE ' |
System Administrator: SYSTEM

3 entries in use out of 92.

System-wide groups enabled.

Project-based qroups enabled.

Non-DEFAULT projects exist.

Null passwords not allowed

Passwords always requested at login.

REERRERAR RS S AR SRR F SR HF IR 542

¥ ¥
% Project section *
% ¥

RERRRERERRASSAARRSEREE 5555544

Project: DEFAULT Administrator: SYSTEM
3 entries in use out of 92

Master project limits:
Groups: . USERS

Project profile:
Groups: . USERS
Initial attach point: {STAFFJUSERS

RS R EEEEEEREEREEEEE" FERREE L EE A S LSS E SR
% % '

Project: DEVELOPMENT Administrator; DOUG
Une enfry in use out of 20,

Master project limits:
Groups: . PROGRAM

Project profile:

Groups: 4<none>

Initial attach point: <nonel

Group: . ADMIN
Group: . USERS
Group: . PROGRAM

ERREAFRRERLLRAFILREF R EEF 2RSS

¥ ¥
% Group section ¥
% $

FRERELELRF RS RS AR SR IR SRS S22

RREFERRRZLERSERRAR S RAI SR E44ES

% %
% User section ¥
4 %

RREFEERFREFERELRAERS LRSS R4S

System-wide attributes for user "DOUG":

Groups: . USERS

Default login project: DEFAULT

System-wide attributes for vser "SYSTEM":

Groups. . ADMIN

p —

- Default login project: DEFAULT

system-wide atfributes for vser "DALE":
Groups: . USERS

Default login project: DEFAULT
FEER R R R R AR R R R R R R R R R R R R R AR SRR SRR E AR R AR AR R R R E R R E 1S

$EE4%
> QUIT

PRIMOS = REV1%9.

DEFINITIONS:

ACCESS CONTROL LISTS Provides an alternative to passwords as a
(ACL) means of controlling the use of the file
systems. It is a list of users {(or sets of
users) along with the corresponding access
modes associated with that user.
FILE ACCESS MODES
R — Read Access
W — Write Access
DIRECTORY ACCESS MODES
L — List Access

P — Protect Access
D — Delete Access
U — Use Access

A — Add Access
ALL -= RWLPDUA
NONE - Deny all access

ACL GROUP NAMES One or more users grouped together because
of their common access needs to the file
system. Group names begin with a period.
{Example: .USERS)

PROJECT Is defined to be a group of users with
similiar attributes and system usage.
Such as: Persons deoing an accounting application
in one project, while the group doing progrTam
development is in another. It is also a method
of allowing the system administrator to delegate
responsibility of controlling the users of a
PROJECT to the PROJECT ADMINISTRATOR. .
Note: Project names do not begin with a period.

USER ID User Id’s are the same as the Rev. 19
login name but they are not neccessarily
tied to a UFD .Id. The user name can nouw
be a3 maximum of 32 characters.

INITIAL ATTACH POINT Is a3 UFD or SUB-UFD in the file system
(ORIGIN) to which the user is attached when
they log in. This is a project based
attribute. Up to 16 levels deep within the
file system and curtently restricted to local
partitions. (no Temote disks for local logins.)

USER REGISTRATION A method for the system administrator
to create a list of users with their
personal passwords, ACL group names and
projects. It will also provide user
verification as part of the login protocol.

ERIMOS = REVIY,

USER PROFILES Loosely defined as those system wide parameters
of a users operating characteristics which
create a unique environment for that user.

This includes the following information:
1. User 1Id — up to 32 characters
2. User Login Password =— up to 1& characters
3. Attributes
a. project — may be more then one
b. ACL groups — as many as 146 groups
c. Initial attach point

ACCESS CONTROL LISTS

Access Control Lists {ACLs) are a way of protecting file system
ob jects (files and directories) from unauthorized access. They provide
a passive (requiring no intervention by the accessing user) mechanism
for effecting this protection, as opposed to the active mechanism
curtently provided by passwords. ACLs are simply lists of ordered
pairs ({identifier>:{access rights>) which determine what users and
groups of users are accorded rights to files and directories.

When a user thinks of protecting objects under his control. there
are three basic areas of protection which come to mind: First, the
user may want to protect all of his objects in a certain way without
taking any specific action. This is known as default protection.
Second, the user may want to protect a certain class or category of
objects in a common way, adding new objects to the category as they are
created and changing access of all objects in a category. We call this
protection by access categqoru. Finally., objects may be protected
individually according to their specific needs. This is known as
specific protection. . Together, categoric and specific protection
provide explicit protection of objects. :

The new ACL system provides the ability to use all three types of
protection. Default protection 1is provided through the directory
hierarchy; that is, the access on a directory "trickles down” <to all
files and subdirectories contained in it (unless they are explicitly
protected themselves). Protection by access category 1is provided by
‘NAMED * ACLs. These ACLs may be created and edited independently of
the objects which they protect. and when the ACL for a category is
changed, the access changes for all the objects in that category
simultaneously. For purposes of clarity, in this document named ACLs
are always referred to as "access categories. " ©Specific protection is
provided by ACLs which are, in effect, simply attributes of the object
being protected. They may be manipulated only through identification

with the object they protect.

ACCESS CONTROL LISTS

The ACL access rights

ACLs provide access control by associating identifiers with 1lists

of access Tights. The rights available and their meanings are as
follows:
Right Applies to Primary Meaning
Protect Directories Accesses may be set and modified.
Delete Directories Entries may be deleted from the directory.
Add Directories Entries may be added to the directory.
List. Directories The contents of the directory may be read.
Use Directories The directory may be attached to.
Read Files The contents of the file may be read.
Write Files The contents of the file may be changed.
ALL Both PDALURWX.
NONE Both Explicitly deny all access.

Identifiers

Identifiers in ACL pairs identify either a single.user, a group of
users, or all users who do not fall into the above two categories.

Individual users are identified by their user id. Groups of users are
identified by group names, which always begin with a dot ("."). Groups
are assigned by system and project administrators and set up at 1login
time. Any user not listed either by name or in a group may be covered

by the special identifier "$REST., "™ which is essentially a "catch—-all"”
group.

Access pairs

n

Throughout this document we will be referring to "access pairs.
An access pair 1is defined as a pair "<id>:<access>; " where the {id>
must be a legal identifier, the colon must be present, and <{access> is
a list of access rights as defined above (which may be null).
Syntactically, we will always refer to this as an <access_pair>. We
will also use the term <access_control_list>, which is simply a list of
<access_pair>s separated by spaces.

ACCESS CONTROL LISTS

The following example is an example of a default ACL:

MFD |}

1 L}
H L]

iSPECIFIC ACL: 1. LEEVEL i

SYSTEM: ALL

. USERS: DALRWX
. CLASS: LUR
JERRY: LUR
$REST: LUR

The MFD is normally protected by a specific ACL. The MFD 1is the

only directory on the system that cannot have a parent. Once it has
been converted to an ACL directory attempts to <convert to default
protection or to delete an access category will be rejected. In the

above example a specific ACL was set to allow the wuser ’‘SYSTEM’ all
access Tights, the acl group ‘.USERS’ everything but protect, and all
others list, use, and read. This is because of the special identifier
“BREST As we create new directories on the MFD, these new additions
will automatically be protected by this "SPECIFIC ACL"™. Once the ACL
is enabled the system will check the 1list each time the file or
directory is OPENED for access. The file system will compare each
entry in the ACL for a match on the "USER_ID" or an "ACL GROUP" name.

In the above example, the "SPECIFIC ACL", which is the default acl
of the MFD, allows the user "SYSTEM" full access to the mfd. The users
in the ACL GROUP ".USERS" can delete; add, list, Tead. write, and
execute only. The ACL GROUP ".CLASS" and the user "JERRY" can only
list, use, and read. For the purpose of this paper "JERRY" will be a
part of the ACL GROUP ". USERS". By creating the ACL with JERRY’s name
listed explicitly, we have limited his access to only LUR. This way uwe
can separate a user from an ACL GROUP for specific purposes. In rTewv.
18 1# a wuser had the owner password they had complete access to the
directory and its files. It was nearly impossible to control just one
user. At Rewv. 19 we can now specifically eliminate one user by User
name. In the above example the RESERVED name "$REST" is used when we
would like to reference all users of the file system.

ACCESS CONTROL LISTS

The next example 1is one level deeper in the tree and is meant to show
that an ACL at the next deeper level could increase a wuser’s access
rights.

—_——————e—————

: MED
1Specific acl! :
H LEVEL1 H
i SPECIFICZ2 ACL) | TEOM ' H JERRY H
SYSTEM: ALL
. USERS: ALL
$REST: LR

The above example shows an ACL that will protect all files and
directories subordinate to LEVELIL. The user "JERRY" will have complete
access below this level since he is not explicitly mentioned and he is
a part of the ACL GROUP ". USERS".

Each level of directories within the file system could have an
ACL. If not otherwise set explicitly, the DEFAULT ACL at the MFD will
cover the entire volume. With the two previous examples. the wuser
" JERRY"” was allowed only list and read access at the MFD level but at
the directory LEVEL! the new ACL increased the wuser "“JERRY’S" access
rights for this part of the file structure.

If a user were to attach to the MFD the DEFAULT ACL would provide
the protection. When that same user attached to the directory "LEVEL1"
the specific acl at that level would automatically become the one the
file system used. After the SPECIFIC ACL 1is <created it essentially
becomes the default acl for the files and directories at this level of
the file system.

ACCESS CONTROL LISTS

The next example is again one level deeper in the tree and shows how
the user "JERRY" has created a "CATEGORY ACL" to protect his files and
directories. With this ACL he has allowed the SYSTEM administrator and
himself complete access but only allowed the rest of the users rTead and

list access

i MFD
.
{SPECIFIC ACLI i
i EEVEL] H
ISPECIFIC2 ACL | i TOM H i JERRY H
: files | i SPECIFIC3 ACL:

SYSTEM: ALL
~JERRY: ALL
$REST: LR

There are 3 commands that control the Access Control Lists at rev.
19. They are SET_ACCESS, EDIT_ACCESS, and LIST_ACCESS.

Setting access

The SET_ACCESS command is used to specify the complete set of access
rights for either a category or a specific abject. Its syntax has the

following forms:

SET_ACCESS <target>

SET_ACCESS <target> <{access_control_list>
SET_ACCESS <target> -LIKE <reference>
SET_ACCESS <target> —-CATEGORY <{category_name>

For purposes of this discussion, files and directories are considered
to be the same. The NO_QUERY option may be used to suppress any of the
questions indicated below. In all cases:, if the <{target> is a password

ACCESS CONTROL LISTS

directory whose parent 1is an ACL directory, the <target> is converted
to an ACL directory.

#* When only a <target> is given
The <target>, which must be a file, is set to use the default
ACL for the directory.

#* When a set of access pairs is given
The action in this case depends on whether or not the <target>
exists, what its type is, and how it is currently protected.

A) <target> is a file
The ACL for the file is set as specified. If no specific
ACL currently exists for the file, one is created. Note

that if the file was category—protected the category will
not be changed.

B.) <target> is an access categoTy
The old contents of the category’s ACL are lost, and are
replaced by the specified list of access pairs.

F <target> does not exist
A new access category is created with the specified list
of access pairs.

When the LIKE option is given

In this case, both the <target> and <reference> must be files. If no
specific ACL exists for the <{target>, one is created. The <target>’s
ACL is set to be identical to that of the <reference’. Again, if the
{target> was category—-protected. the <target> 1is rtemoved from the
category and the category is not changed.

When the CATEGORY option is given
The <target> must be a file and the <category_name> must specify an
existing access category. The "<target> 1is added to the access

categorTy.

Changing access

The EDIT_ACCESS command is used to modify existing ACLs. Its
syntax 1is:

EDIT_ACCESS <target> <access_control_list>

The <target>. which may be a specifically—protected file or an access
category, has its ACL modified to include each of the new <{id>s. If an
<id> already exists, its <access> 1is changed. A null {access>
indicates that the <id> should be Temoved from the list. EDIT_ACCESS
should not be wused on files which are currently default or
category—protected, but if it is the user will be queried to determine
whether or not he wishes to create a new specific ACL. Example: We

want to add a new user to the USER "JERRY’S" category. The command
would look like this:

WA NS e

ACCESS CONTROL LISTS

EDAC CATEGORY. ACL NEW. USER: ALRW

If we wanted to change the access rights of the group "SREST", the
command would look like this:

EDAC CATEGORY. ACL $REST: NONE
To eliminate the User completely use the command:
EDAC CATEGORY. ACL OLD. USER:
the <NULL> access tights will remove the user from the list.

Examining access

The LIST_ACCESS command allows users to examine the access rtights
for any file system object. Its syntax is:

LIST_ACCESS [<object>]
If the <object> is omitted. the access Tights for the current directory

are given. I# the <object> 1is an access categoTy, its ACL is
displayed. Otherwise, the ACL protecting the <object> is listed.

! LEVEL1 !
1Dir. acl ! ¢ SALLY' |} | JERRY i i b AL
! }
this. acl . 1 i PIRL. ! ; ! 3
: { AL, acY | ! DIR2 i

iTom. acl | ; DIR4 : ; DIRS i

In the above example the ACL Y"DIR.ACL" beneath the directory

ACCESS CONTROL LISTS

" EVEL1" cobld become the DEFAULT PROTECTION of this entire subtree
with the following command: :

SAC LEVEL1 —-CATEGORY DIR. ACL

The user "JERRY" could protect specific files wusing the command SAC
like such:

SAC SPECIFIC. FILE JERRY:RWX $REST: NONE

The users "TOM"” and "AL" could do likewise. The DEFAULT ACL is a
global one and would be used to automatically protect any new files and
directories that would be created on a day by day basis. If a User
needed special protection for a specific file or files they would
create their own ACLs to provide it. A DEFAULT acl could protect all
entries within a directory or an individual acl could protect a single
file or directory with specific access rights. An example might be if
the user "JERRY" had a category acl allowing the ACL GROUP ". USERS"
read access only but had one file that the user "AL" needed to be able
to write. An ACL could be created to allow the user "AL" write access.

In summary, a default acl at the mfd 1level <could protect the

entire volume. But in actual practice as we traverse deeper into the
tree a users access tights could increase or decrease depending on
their individual needs. With the implementation of access control

lists this is now possible, Jjust by defining new ACLs at lower levels.
We are much more flexible about who can have access and who cannot.

Tes THunds MArk Ress

P
C VEMD P
S

L8 20 +o 22 cla
X %Q/Qum(_ UWFD

Speclie - hets ar tnigue = Change o et o et
carmsoay ACl's Gre wnwwad - chavgs opphe fz all

boteld el potut (AP

Sx© Prsyects covntain < Aot Giong tasentilz.
& = = =
Ras el

Uson st Wn SV List und o puojeck

SUBJECT: DISK QUOTAS
TIME . A MINUTES
MATERIAL: SUPPLIED

OBJECTIVES:

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL ABLE TO:

1. DESCRIBE THE DISK QUOTA FEATURE OF PRIMOS
2. USE THE COMMAND: SET_QUOTA
3. USE THE COMMAND: LIST_QUOTA

4. DESCRIBE THE DISK HIERARCHIES

T o é 2,

o 2

DISK GUOTAS

- What are disk quotas?

- Provides administrative control over disk usage.

- Quota limits the number of records a single directory or
directory sub-tree can Use.

- Units are physical disk records (2kb).

- May be specifed on a per-ufd basis.

- Quota of 1ero means unlimited record usage is allowed.
- Quota may not be set on an mfd.

- Requires rev 19 disk format,

Note: No temporary file allowance, nor login/out quota.

STRATEGY FOR PROFILES, ACLS, GUOTAS

Utilizing Quotas

- The ability to impose quotas is controlled by ACLs.
- For a particular sub-tree or partition, quotas may be:

conserved
overcommited
undercommited
unrequlated

- Conserved means that the sum of all the quotas equals
the amount of disk space available.

- Overcommited means that the sum of all the quotas
exceeds available disk space, and that a 'disk full’
condition can oCCuT.

- Undercommited means that the sum of all the quotas
is less than the available disk space, thus reserving
some amount of space for future needs. Only the
‘mazimum quota eiceeded’ condifion can occur.

- Unrequlated means that one or more UFDs have no quofa.

DISK QUOTAS

- When are quofas useful?
- To meter disk record usage
- To si1e directories

- To administer to file system more effecfively

DISK QUOTAS

Example:

ufd a |

- If the quota set on ufd b is 700 records and the quota set on
ufd ¢ is 900 records, and the parent directory ufd a8 has a
quota of 1000 records, then the fotal records that can be
used by the entire sub-free (ufd a, ufd b and ufd c) is 1000,

NEW COMMANDS

SET GUOTA
USAGE: SQ@ {PATHNAME> -MAX <RECORDS>

{pathname
Name of directory to impose quota on.

‘recordsy

Number of 2kb records allowed for use by this
sub-tree.

- Sefs a quota on “pathname.,
- Must be owner or have Profect access fo superior directory.

- If records is specified as 1ero, there 1s no quota.

NEW COMMANDS

LIST QUOTA

USAGE: LG [{PATHNAMEZ]

- Reports:
Maximum quota for the directory and 1fs
subdirectories. Total number of records
currently vsed by this subfree. The number
of records used in this directfory only.
(not including subdirectories)

- L1sf access 1s required.

DISK QUOTAS

Example:

1000

0=

LG UFD_A

EXAMPLE:

Matimum records allowed = 1000

Total records used = 680

Records used in this directory = 230

DISK QUOTAS

1.1 When Are Quotas Useful

Quotas are useful to limit the number of records that a directory
may use. They may also be used to meter disk record usage and to
size directories.

1.2 What Are Quotas

Quotas are limits placed on directory size. The limits are in disk
record units. No directory with a quota is permitted to obtain
records causing it to exceed .its quota. This restriction is
enforced on the entire subtree. If multiple quotas are in effect at
various levels of the subtree, then the most restrictive quota is
enforced.

A quota is always a positive integer value. No quota {(quota = 0)
allows unlimitted usage. Negative gquotas are not allowed.

1.3 Commands

1.3.1 List Quota C[<pathname>] (list guota information)

List quota information of directory <pathname>. If <pathname> is
omitted, the current attach point is used.

The abbreviation LG may be used.

Qutput is of the form:

Maximum Tecords allowed = X
Total tecords used =Y
Records used in this directory = Z,

where X is the quota max for the directory. Y is the number of
records used in the directory tree and Z is the number of records
used in this directory level.

Quotas are enforced by never allowing Total records ‘used to
exceed Maximum Tecords allowed. Also neither Total rTecords used
nor Records used in this directory may be less than one.

DISK QUOTAS page 1

1.3.2 Set Quota <pathnamel> -max <n> (set maximum quota)

Set the maximum quota on directory <pathname> to the value <n>
records. A restriction on usage is that the user of the command
must have owner or protect access to the parent directory for
<pathname>.

The abbreviation SQ may be used for Set_Quota and -m for -max.

Exception condition ‘file in use’ may be raised when setting a
quota on a directory without a current quota. The exception will
occur if there are active users of the directory or its subtrees
at the time the quota change from zero is Tequested. Note that
this will occur on CMDNCO when the system conscle is attached
there. Also note that this only occurs when changing a quota
from a8 current value of zero to a positive value. I# the
directory already has a non—zero quota this exception will not
occur.

1.4 Using Quotas

Disk record quota are an optional feature for each directory. if
there is a maximum quota on a directory, then the system uses the
quota restriction. Disk usage meters are recorded regardless.

1.4 .1 Maximum Quota

Maximum quota is used to restrict a user to an amount of disk

storage specified by the system administrator. This is
accomplished by setting the MAX quota on the wuser’s UFD. The
subtree for the UFD will not be able to use more records than
that maximum, -

The maximum quota is an arbitrary value. The sum of the MAX
quotas on all top level UFDs can exceed that which is available
on the logical disk. In this case, the maximum quota ¢ does not
guarantee the availability of records in the future. The user

still competes with other users for available records, ‘but the
competition is controlled. o

Inferior directories can also have their MAX quota set.; The
setting is the same as that for top level directories. The Duner
of the immediately superior directory merely sets the value ofy

MAX quota of the target directory. The previous value, if- ang. 3
is changed to the new valvue. The MAX quota of the current
directory is wunchanged. In this way the HAX}JCquota is

DISK QUOTAS page =2

non—conserved.

With a non—conserved system the project administrator has a
privilege similar to that of the system administrator. namely
that he can over—commit his allocated disk records. It should be
noted, however, that he is not allowed to actually wuse morTe
records than he is allocated.

The reason for this arbitrary maximum is to allow a wuser extra
records on a short time basis for listings and other temporary

files. Most users will periodically cleanup their directories in
order to keep far enough below their maximum to allow ease in
working. I1If this assumption 1is correct, the administrator can

give out more Tecords in maximum quota than actually exist
because users will not use their allocated maximums at the same
time. This gives better utilization of the disk. since users are
sharing records for temporary use. Of course, if a site finds
that most wusers tend to keep close to their maximum quotas and
the disk full condition continues to occur, it can set the
maximum quotas so that the total 1is equal to the size of the
logical disk.

1.4 2 Quota Hierarchies

A logical disk can be made to use the quota feature by first
modifying it with the new FIX_DISK. FIX_DISK will £ill in the
records used field in UFD headers. The owner of the MFD would
then set the MAX quota on any top level UFDs he wishes. In this °
way he could rTestrict the number of records used by those UFDs.
A directory only becomes a quota directory when its max quota is
set. N e
3

When a file is created or extended the gquota system will check
all superior directories to insure that a MAX Qquota is qbt
exceeded. In the example below B and D are non—quota directories
and are therefore not checked. Let us take the example of adding
a record to directory D. D has no quota so its qub%a is not
checked. Its parent C has a quota of 100 records afd a total
records used of 60 records leaving a difference 40 records. = 40
records minus the one we are adding is 39 which is greater than
zero so we pass the test for directory C. Directory B has no
quota so we go on to directory A. A has a quota of 4000 records
and a total records used of 4000 leaving O. Subtracting the,
record we wish to add leaves —1 rTecords which 1is negajive.and'me%
fail the quota test for directory A. Therefore, the record will
not be allocated and a erTor will be returned. % § :

DISK QUOTAS page o

'] 'w- §
!
-- |
4 j]
Mt Max 4000 A é
Dir used 1500 H 5
Total used 4000 H 3
i]
Max 0 B y
Dir used 2440 ! £
Total used 2500 H :
: ;
Max 100 o :
Dir used 15 H :
Total used &0 H
}
Max (0] D
Dir used 45
Total used 45
. &
B

- = B Bt) . o L bt il S bl

SUBJECT: BADSPOT HANDLING e
TIME : 15 Mihutes -~
MATERIAL: Supplied :
OBJECTIVES: _ |
UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO:

1. Describe the New BADSPOT handling features.
2. Use the new BADSPOT handling feature effectively.

3. Present the new features to customers.

[MPROVED BADSPOT HANDLING

- New badspof file format allows single record badspots, insfead
of mapping out a whole frack. Confains errors fo a smaller space.

- Allows remapping of 2 bad record £o a good one.

- COPY _DISK and PHYRST do not understand file system structures.
If a badspof is encountered fthey can create an ‘equivalence’
block to a goodspot.

- FIX _DISK understands file system structures. It eramines mapped
enfries in badspot file and adjusts file system pointers fo include
mapped record. This must be done prior fo adding the parfifion.

- PRIMOS does nof creafe badspot entries, nor remap badspofs.

- Available only on 19 format disks.

e

NEW PHYSICAL DISK FORMAT

- Access Control Lists, Disk Quotas, Badspot Handling
Require a new physical disk format.

- Starting at 19.0 each parfifion contains a revision stamp.
- Paritition is converted to 19 format by FIX DISK or rev 19 MAKE.
- Must use FIX DISK nof FIXRAT on 19 format parfifions.

- FIX DISK will fix any rev parfition, and will do a beffer job
than FIXRAT.

- Pre-19 format disks may be run under rev 19, but must be converfed
before above feafures can be used.

- Pre~19 format disks can be moved freely between rev 1B and rev 19
systems (without running FIX DISK or a conversion ufility).

- Rev 19 format disks will NOT run under earlier revisions. e -33¢
- FIXRAT, rev 17 or 18 will break a rev 19 disk

- Rev 19 disks can be reverted fo rev 18 format via a CPL?pruﬁTam
(Note, should only be done in case of emergency.)

- New DOS for rev 19.0.

1 BADSPOT HANDL ING

1.1 Backaground

Currently there is no viable scheme to handle badspots on disks in
either hardware or software, other than MAKE marking ocut the entire

track as unavailable. This is not a problem for any product except
for COPY_DISK/PHYRST, specially in 1light of new disks with high
errorT Tates. A general badspot handling scheme applicable to file

system disks is required.

1.2 Problems With Currtent Badspot Handlinag

1. Details of disk badspots are currently saved in the BADSPT file
as head number, track number pairs. Therefore, even if only one
record of a track 1is bad, all nine records of the track are
considered to be bad. The 1loss of good Tecords hasn’t been a
problem yet because the disks we are currently selling contain very
few badspots. Future disks are expected to have many more badspots.

2. Another problem would have arisen with the introduction of the
FIX_DISK utility. I#f FIX_DISK detects a bad disk record, it will
truncate the file or UFD to which the record belongs. If the other
records in the track are good, the files and UFDs to which these
Tecords belong will be left intact. This is in order to minimize
the loss of information due to one bad record. However, as the
curTent BADSPT file can contain only head number and track number of
the bad record, the whole track (all nine records) will be marked as
bad in the BADSPT file. Because the file system does not loock at
the BADSPT file, it will be able to Tun using the good records in
the track. Nevertheless, this 1is an inconsistent condition.

COPY_DISK and PHYSAV use the BADSPT file of the source disk to avoid

reading bad Trecords. These tracks are not written to the target
disk (COPY_DISK) or to magnetic tape (PHYSAV). The new partition:
will net <contain any information in the good rTecords of the bad”

tracks. ¥

3. When COPY_DISK or PHYRST is restoring a partition, they may not
be able to write a record due to a badspot on the new partition.

The record which cannot be written at its correct addreése is lost..
v

BADSPOT HANDLING page 51

L

1 8 Salution

The sclution selected involves mapping new physical records in place
of bad ones and changing all file system pointers tao this new
Trecord. Essentially COPY_DISK/PHYRST would create the mapping and
FIX_DISK will change the file pointers. A new format for the BADSPT
file is Tequired. All this is explained in detail in the following

sections.

1. 3.1 BADSPT file format

1.8. 1.1 81ld format

Currently, the BADSPT file is a save memoTy image. The file
may be examined and modified by restoring it and referencing
it with PSD/VPSD. BADSPT is restored into consecutive memory
locations starting at location ‘1000 and ending at ‘1000 + 2 *
N -— 1 where N is the number of bad tracks in the partition.
Each word pair in the BADSPT file contains the track and head
numbers of a defective track on the disk. The BADSPT file is
created by MAKE and is wused by FIXRAT/FIX_DISK, COPY_DISK.,

PHYSAV:, PHYRST and AINIT.
1.3.1. 2 New Format

dcl 1 badspt_+file_header,

2 bad_blk_off fixed bin, /# offset of the 1st badspt blk */
2 MBZ fixed bin, /% must be zero #*/ ;

2 file_size fixed bin, /% size of the badspt file®/
2 reserve(5) fixed bin;

"

dcl 1 badspt_blk_header,
2 bcw, /% block control word #/

3 type bit(4), /% type of this block (badspt hl%,tgpe =1
3 length bit(12), /% length of this block #/ '
2 badspt_blk((badspt_blk_header. bcw. length—1)/2)

3 track fixed bin, /% track number 3#¥/ s, i
3 sector biti8), /¥ sector number+1, (O means whole track
3 head bit(B); /¥ head number #/ '
dcl 1 eqv_blk_header.
2 bcw, /¥ block control word #/ ‘
3 type bit{(4), /% type of this block (edv blktype = 1)
3 length bit(12), /# length of this block #/ :
vid .
BADSPOT HANDLING page = -

2 eqv_blk{(eqv_blk_header. bcw. length—-1)/2)

3 bad_track fixed bin. /% bad track number #/

3 bad_sector bit(8), /#* bad sector number+i #/

3 bad_head bit(8), /% bad head number #/

3 eqv_track fixed bin, /% equivlant track number#/

3 eqv_sector bit(8), /% equivlant sector number+l #*/
3 eqv_head bit(B); /# equivlant head number #*

1. 3. 2 PHYSAV, PHYRST., COPY DISK, and FIX DISK

1.3. 2. 1 INTRODUCTION

Previously., the way the physical <copy wutilities handled
badspots on a source partition was by reading a file in the
MFD called BADSPT which was created by MAKE if a partition was
found to contain bad Trecords when it was initialised. This
BADSPT file provided information which enabled PHYSAV and
COPY_DISK to avoid rteading a track which contained a bad
record. All records in this track were also marked ‘in-use’
in the DSKRAT file so that the File Management System was not
able to access the bad record.

The new format BADSPT file has two major enhancements over the
previous format.

1) Single bad Tecords are marked, rTather than whole tracks.

2) An EQUIVALENCE block has been defined, which enables
software using the BADSPT file to indicate that it has been
able to avoid writing to a badspot by writing the TrTecord
elsewhere. y
Starting from Rev 19, each partition will have a Rev Stamp.
The mew BADSPT file format will be allowed only on a Rev 19
style partition. g

1. 3. 2. 2 BADSPOT HANDLING

BADSPOT HANDL ING page &, 3 # L

1.3. 2. 2. 1 Source Badspot Handling

PHYSAV and COPY_DISK were previously only able to avoid
reading bad tracks as marked in the BADSPT files of the
source partitions. Therefore, these two wutilities have
been enhanced to aveoid reading individual bad records as
marked in the new format BADSPT files.

1.3.2. 2.2 Targqet Badspot Handling

PHYRST and COPY_DISK previously had no notion at all of
badspots on the target partitions. Target disk badspot
handling has therefore been added to them.

Badspot handling for a target disk involves more than Just
avoiding bad records on the target disk, as the record that
would have +fallen on the badspot needs to be written
elsewhere, 1i.e. it needs to be mapped toc an available free
record. The only way that PHYRST and COPY_DISK can know
whether a particular rtecord is free 1is by checking the
DSKRAT file. Therefore, for each badspot entry in the
target BADSPT file, a free record must be found from the
source DSKRAT file, and the entry that says to which rTecord
address the badspot has been mapped to must be stored in
the BADSPT file. This is achieved by adding four-word
entries to the EQUIVALENCE block of the BADSPT file.

During the restore or disk copy. the programs can then
access the EQUIVALENCE block of the target BADSPT file to:

1) map records that would have fallen on a badspot,

2) avoid overwriting those rTecords that have had badspots
mapped onto them

N. B. The Trecords that have been mapped contain exactly the

same information as the original Trecord (except for the
CRA).

o3 st B RE1X DISK

4,

Badspot handling for FIX_DISK involves fixing the filey =
pointers associated with the bad records to point to the
remapping Tecords wusing the Temapped information that is
contained in the EQUIVALENCE block of the new format BADSPT
file. 1t also makes available the gocd records on the
target disk which correspond to bad records on the source
disk. After FIX_DISK is tun, the EQUIVALENCE block of the
new format BADSPT file will be removed.

BADSPOT HANDLING page 4

1. 3. 2. 3 INITIAL STATE OF PARTITIONS

As a Tule, the format of the target partition will be dictated
by the source partition. Also, the badspot handling feature
will be available only for rev 19 format partitions. Because
the target badspot handling involves using the DSKRAT file of
the source partition to find free rtecords. then the DSKRAT
file must be correct. If you cannot be sure this is so., then
FIX_DISK should be run on the source partition.

1. 3. 2. 4 FINAL STATE OF PARTITIONS

PHYSAV and COPY_DISK will leave source partitions exactly as
they were.

PHYRST and COFPY_DISK will only 1leave target partitions as
exact copies of the original source partitions if the command
line option —-NOBADS is used,; or if the source partition was a
pre tevl9 partition.

Otherwise:

1) If the target disk originally had a BADSPT file then
afterwards it will contain that BADSPT file with the appended
EQUIVALENCE block. Records will have been Temapped as
indicated by the EQUIVALENCE block.

2) If the target disk did not originally have a BADSPT file
then afterwards it will still not contain a BADSPT £file.

The exception to these rules is if badspot handling has been
turned off by the program - for example if no free Tecords
were available on the partition for bad records to be mapped
onto. In this case there will be no BADSPT file left on the
target disk. y

1.3.2.5 Compatibility

i,
g

COPY_DISK, PHYSAV/RST will handle pre rev 19 partitions

exactly as before. In other words, the target partition will
be an exact copy of the source partition, and no badspot
handling will be provided. o

In this case, the message:

WARNING - SOURCE PARTITION IS PRE REV 19
NOQ BADSPOT HANDLING WILL OCCUR ON PARTITION pdev

will be issued.

BADSPOT HANDLING page 5

1. 3. 2. 6 USER INTERFACE

If badspot handling has taken place during PHYRST or
COPY_DISK, then for each affected partition the message:

BADSPOTS HANDLED ON PARTITION pdev

will be put to the terminal at the end. FIX_DISK must be mun
on that partition before it is used for any reason other than
as a target disk for PHYRST or COPY_DISK.

1f the situation occurs where PHYRST or COPY_DISK are
attempting to map a record round a2 badspot and there are no
free rTecords available, the message:

NO FREE RECORDS AVAILABLE ON PARTITION pdev
Ok TO WRITE TO IT WITHOUT BADSPOT HANDLING (YES/NQO)?

will be issued to the terminal. If the user types YES then
the partition will be <copied to without badspot handling,
otherwise the program will exit, to allow the user to copy to
a different partition with fewer badspots.

Upon finding a BADSPT file (on source or target partitions)
which is in some way inconsistent, the message:

BAD BADSPT FILE ON PARTITION pdev — IGNORED

is issued.
1f the BADSPT #file of a source partition contains an

EQUIVALENCE block, then the program will abort with the errTor
message:

BADSPT FILE ON PARTITION pdev HAS AN EQUIVALENCE BLDCK

PLEASE RUN FIX_DISK s S

P

3

N.B. A BADSPT file not marked as special in the MFD @ is .

completely ignored.

7o)

BADSPOT HANDLING _ .o R

SUBJECT: FIX_DISK Command - Sl ALY
TIME : 20 Minutes) ¢
MATERIAL: Supplied |

OBJUECTIVES: e

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO:

1. Describe the FIX_DISK command and its purpose

2. Use the FIX_DISK command to convert a rev. 18 disk to

o Y — 5 o S, s i S g R

Trev. 19 format.

3. Present the new command features to customers.

h—.a-—n. = il R "'il"'l"

- Fix Disk replaces fixrat for rev 19 format disks.
- Fix Disk provides all fixrat features plus:

Checks acl inteqrify
Checks disk quota integrify
Supports new badspot mechanism

< Rev i1 _
- Fiyrat must NOT be run on a rev 19 format disk.

- Fix Disk will not run under Primos II. This may require & change
in backup procedures for sites that are currently doing backups
under Primos II, and they include running fixrat (recommended).

FIX DISK -DISK <physical _device> <confrol_arguments’

Control Arquments

=1 fites inconsistencies

~yfd CoMPRession compresses ufd’s (must have -fix)

-COMmand DEVice allows comdev to fited from system
console; other users are logged out

-No Quota turn off quota checking

~CONVERT _19 convert to 19 format

-LEVEL <number’ directory level for print output

~FiLE print all file names

-MaX nested level <number’ maximum depth allowed for nesting

-Auto Truncation truncate nesting greater fhan MAX

-INTeractive allows reconstruction of bad RAT

-DUFE delete unknown file enfries

FILE SYSTEM INCONSISTENCIES REPAIRED:
(without deleting or truncating)

- Bad backward pointer in record header.
If the record really belongs to the file the pointer will be
fixed, else the file will be trucated at that point.

- Bad forward or backward pointers in the data level of a DAM file.
These can generally be fixed if the index pointers are okau.

- Bad record address in indeyx level of a DAM file.
These can generally be fixed if the data pointers are okay.

- DAM indey is too short.

The indey will be extended if there is space in the index record.
[f not, the file will be truncated.

- DAM indey 15 foo long.
The indey should be fruncated leaving the file infact. + °

‘td

- The index level in a record is wrong.
The correct value should be set.

- The special bit is not set for DSKRAT or BOOT.
The bif will be forced on.

- The BRA in the header of a record 15 wrong.
It will be set to the right value.

- The CRA in the header of a record 15 wrong.
It will be set to the right value.

- The word count in the header of a record 15 wrong.
It will be sef to the right value.

- The UFD header in a directory has the wrong length. 9.
The entry control word will have the correct lengfh set.

- Quota information that is wrong will be set to the correct =
value. i

P

1 Overview of FIX DISK

FIX_DISK reads every phuysical recerd in every file, UFD, and segment
directory, and checks that the information in each record header is
consistent with the UFD that contains the record.. If the <current UFD
is a Quota UFD, FIX_DISK also checks the consistency of its quota
information. I# any inconsistency exists, an error message ‘is
generated.

FIX_DISK builds 1its own record availability table (RAT) while it is
traversing the existing file structure and compares its RAT with the
DSKRAT file. If discrepancies are found, an error message is
generated.

If requested, FIX_DISK will attempt to repair mismatched pointers,
correct quota information, truncate/delete defective files, and replace
the defective DSKRAT file. The disk will then be in a consistent
state.

If requested, FIX_DISK will convert a pre-rev 19 partition into a rev
19 partition. 1t involves initializing the quota information. changing
the BADSPT +file to the new format, and creating a rev stamp. I# the
current partition is a rev 19 partition and a equivlence section exisit
in the BADSPT file, FIX_DISK will map the bad records into their
equivlence records and fixes the file system pointers to point to the
equivlence records. When FIX_DISK has completely traversing the file
system structure, the equivlence section of the BADSPT file will be
deleted from the BADSPT file. If a badspot is encountered in a rev 19
partition, it will be added to the BADSPT file. I1f the BADSPT file
does not exist. one will be created.

FIX_DISK determines whether a UFD is a quota UFD by examing the maximum

quota word in the UFD header. If it is not zero, it is a quotaswUFD;
I1# the MFD of a partition is a quota UFD, that partition is a quota
partition. Dtherwise it is not a quota partition and quota information

fields are ignored. When FIX_DISK has finished traversing all the
subtrees of a quota UFD, the quota information is checked against the
records used determined by FIX_DISK. i1f# any inconsistency exists. an
erToT message 1s generated. I requested., the incorrect quota
information is fixed unless the quota used is greater than the maximum
quota. Because FIX_DISK cannot and should not decide which records to
release to correct the problem, it just marks the quota system as in an

A

inconsistent state. Since the records used of this quota UFD has:
exceeded its quota,; it cannot draw any addition records. The user mustf

delete records or increase the directory’s quota to Tresclve this

gonflict. FIX_DISK determines whether a UFD is an ACL UFD by %he file
type field for the UFD in the UFD entry of it’s parent. FIX_DISK will
verify that for an ACL UFD file entries point to valid ACLs ‘e Access
Categories or default, Access Categories point to valid ACLs. and ACLs

point back to the same object that peints to them. 1# there is an
erTor and fixing has been Tequested. for file entries with bad ACL'

-

pointers, it will set the ACL pointer of the file entries to the

default wvalue. Access Categories or ACLs with errors will be Heleted.

FIX_DISK should be run on a regular schedule or whenever there is
reason to expect that the file structure or the quota system is
damaged. .

3:-1 Usage:

FIX_DISK -DISK <physical disk> [control argumentsl]

<physical disk> is the the physical disk number on which FIX_DISK is
to be Tun. The disk MUST be assigned first, unless the -—comdev
option is being used.

The control arguments are optional. They may be selected in any
order from the list below. If no control argument 1is selected.
FIX_DISK only generates error messages if errors are detected.

—-£ix

Besides printing file structure error messages, FIX_DISK
corrects quota information, truncates or deletes defective
files, generates a corrected DSKRAT if the current one is bad,
and maps the badspot Tecords to the BADSPT file if -—fix is
specified. If omitted, FIX_DISK will not perform any disk
modifications.

-ufd_compression {-cmprl}
If specified along with =fix, FIX_DBISK compresses UFDs,
eliminates entries flagged as being deleted files ’ or
directories.

—command_device {—-comdev}

If specified, the disk being fixed is the <command disk and

FIX_DISK must be invoked via the system console. FIX_DISK will -

be the only wuser in the system. If there is any other users.
they will be logged out automatically.

-no_quota {-nq2

I1# specified, it assumes that the partition is not a quata
partition and the quota checking mechanism in FIX_DISK will be
turned off.

—-convert_19

If specified, the current partition will be converted into a
revy 19 style disk. If a BADSPT file has already existed, it
will be converted into the new format. All quota "information
is initialized, and all warning/error message rtelated to quota
will not be printed. A Tev stamp will be created. This option
must be used with —-fix option. s

.

LR

—-level [n1]

I1f specified, the decimal number n that follows is the 1lowest
level in the tree structure in which directory names are to be
printed. If omitted, FIX DISKA will print up To 1desvel &
directories (MFD and all directories in MFD file).

-file
If specified, the file names in all directories are printed.
-max_nested_level {—-maxl

If specified, the decimal number that follows is the maximum
depth that directories are allowed to be nested. If omitted.
the maximum depth is set to 100. (see —auto_truncation)

—auto_truncation {—-atl}

If specified, FIX_DISK automatically truncates directories that
are nested too deeply in a directory ztree. If omitted,
FIX_DISK will abort if the maximum depth is reached.

—-interactive {-int’>

If specified. and the current DSKRAT 1is bad or missing.
questions will be asked so that FIX_DISK can reconstruct a
~consistent DSKRAT. I1f omitted and the current DSKRAT is bad or
missing, FIX_DISK will abort. s

The motivation of implementating this feature is to allow users
to replace a bad or missing RAT. FIX_DISK computes the number
of Tecords in the partition from the disk number. in case of
ambiquity, FIX_DISK asks resolving questions., answerable by
either YES or NO. ; %

-dufe {(delete unknown file entry) F

If specified, all unknown file entries are eliminated. If
omitted, all wunknown file entries are left wuntouched: no
compressions are performed on the UFDs in which the unknown
file entries reside and the DSKRAT will not be altered except
in the case of the DSKRAT indicates a particular recaord 15 Prﬂe
but that record is actually in use.

The motivation of implementing this feature is to avoid
accidental deletion of valid file entries by running the wrong
version of FIX_DISK. (e.g. an older version that does not

recognize the new file types has to be run.) However there is
a drawback of not deleting unknown file entries. The File
System advances to the next file entry by wusing the length
field of the current file entry. If# the current file entrgwis

garbage, the File System may bypass good file entries by wusing

its length field.

1.2 Description of Error Messages

The backward pointer is bad. It should be YY instead of XX

The backward pointer of a rtecord does not point back to the
previous record of the file. In the case of the first record of
a file, its back pointer is not zero. I =fix option is
specified, the hack pointer is fixed to point to the previous
record if the DBRA word of this record matches the first record
address of this file. The file is truncated if the BRA word of
this record does not match the first record address of the file.

The Beginninag Record Address (BRA) pointer is bad. It should be
YY instead of XX

The beginning TrTecord address word of the records within the file
except the first record should point to the first record of the
£#ile. If —fix option is specified, the BRA pointer is fizxed.

System file is bad, ignored

An error, which would normally cause deletion of a file, has been
found in one of the special files BOOT, MFD, or DSKRAT in the
MFD. FIX_DISK aborts. ‘

The current record address (CRA) is bad. It should be YY is XX

The current record address word of this record does not match the
current address. This message may be preceded by ten disk error
messages because this problem <could indicate a disk drive
problem. If —fix option is specified, the file is truncated. %,

UFD nesting exceeds maximum specified i

Directories may be nested to a depth of N levels. (default N =
100) FIX_DISK <cannot follow the directory tree because the user
has nested directories to more than N levels. FIX_DISK ignores
this directory wunless -at option is specified 1in which case
directories that are nested too deeply in the directory tree will
be truncated. e g Y

The tTecord header of DSKRAT file is bad

The number of heads is different. It should be YY is XX
The phusical record size is different. It should be -YY is XX
The DSKRAT header has wrong length. It should be YY is XX

The information contained in the DSKRAT header does not
correspond to the information computed from the disk number.
Either the disk number is incorrect or the DSKRAT header contains
incorrect information. I#f =-int option 1is omitted, FIX_DISK
aborts. Otherwise FIX_DISK asks:

FIX DSKRAT?

A NO response causes FIX_DISK to abort.

The file structure of DSKRAT is bad

This message is obtained if the DSKRAT file contains any bad
record pointers, or contains inconsistent information. If# either
—-int or —-fix is omitted, FIX_DISK aborts. Otherwise FIX_DISK
attempts to reconstruct the DSKRAT file. FIX_DISK computes the
number of Tecords in the partition from the disk number. In case

of ambiquity, FIX_DISK asks resolving questions, answetrable by
YES or NO, such as: 40 MB storage module?

FIX_DISK then asks
Split partition? ‘
v,
If part of the disk is to be used for paging then answer YES,
otherwise answer NG, If the answer is YES, FIX_DISK then asks

Paging records (decimal)?

The user should type in the number of Trtecords to be wused for
paging.

FIX_DISK then prints the disk number, file records. and paging
Tecords. L,/

Partition XX File-records XX Paging—-records XX
and asks:
Parameters OK?
If the numbers are incorrtect, answer NODO and FIX_DISK will attempg,

to recompute the numbers again.

The father pointer is bad. 1t should be ¥Y is XX

The father record address word of the first record of a file does
not point to the beginning record address of the file in which &
this file 1is entered (its father). If —fix option is specified,
the father pointer is fixed to point to the BRA of its father. .

N

L

¢
pgeLc T

The forward pointer of the top level index Tecord

of a3 DAM file is not zero The top level index must only be one
record long, therefore the forward pointer of this record must be
zeTo.

The index level of this DAM file is incorrect. It should he VY
instead of XX

The index level word of this record is incorrect. It should be
zero for SAM files or one less than the previous level for DAM
files. If —fix option is specified, the index 1level word is
fixed.

The DAM index is too long to represent the DAM file

The data rTecords of a DAM file are shorter than its index
indicates. If —fix option is specified, the index is truncated.

The index of this DAM file is too short to represent the data
Tecords

The data rmecords of a DAM +file is 1longer than its dndex
indicates. If —fix option is specified, the index is fixed.

The tree used count is bad. It should be YY instead of XX

The tree wused word of this quota UFD does not match the quota
used that is calculated by FIX_DISK. If =fiy cption is
specified, the tree used is fixed.

The directory used count is bad. It should be YY instead of XX . .

The directory used count word for this directory (all the files. .,
and nonquota UFDs belong to this directory and the directory file
itself) does not match the directory used <¢count that = is
calculated by FIX_DISK. If =fix option is specified, the
directory used count is fixed. o

The next index does not match the forward pointer of the curr#nﬁf' .
data record . L

- %Y
The pointers of the index section and the data section do ﬁhtf
agree. If —fix option is specified, the following actions will
be taken. The back pointer of the record that is pointed to by -

the DAM index and the back pointer of the record that is pointed '
by the forward pointe of the current data record are examined.
The record with the back pointer points to the previous data o

record will be chosen. If neither back pointer points to the
previous record or both back pointer point to the previous
record, the file is truncated.

Inconsistent entry. Record = XX, Word = YY

Information in a file entry in a UFD is not self-consistent and
cannot be reconciled. If# —fix option is specified, the entry of
this file is changed to vacant.

Disk read/write erTToT. Record = XX Track = YY Head = ZZ

An error occured while reading/writing record XX. If —fix eoption
is specified, the file 1is truncated and this badspot record is
added to the BADSPT file.

Lok

EOF occurs in the middle of an entry

A directory ends in the middle of the last UFD entry. i1¢ =833
option is specified, the entry will be deleted.

he Quota suystem may be incorrect

This message 1is issued if the partition was changed under DOS.
Since DOS doesn’‘t support quotas, there may be directories on
this partition with incorrect quota information.

Partition not shutdown correctlu during the previous session

This message is issued if the partition was not shutdown with the
SHUTDOWN command under Primos. If the system crashed or the disk
drive was spun down instead, this message will result. e §

The word count of record XX is bad

The data word count of a record is not reasonable. For every
record except the last record, the data word count should equal
the record data size. The data word count of the last record
should be between zero and the record data size. 1f -fixEupgtion’
is specified, the word count is set to record data size.

Physical Device number {-DISK} is missing il

The physical device number is not specified in the command liné.

Bad phusical device number

The physical device number that is specified in the command 1line
is bad.

2 files point to the same record

Two or more files on this partition use the same record. I+
—=fix, the second or later file to reference the Trecord will be
deleted.

The Directory/Seqdir is longer than &4K!

The maximum size of a3 UFD/SEGDIR is &4K words. If one exceeds
this 1limit; it will be truncated if —fix is specified.

The BADSPT file is bad, ignored

The BADSPT file that is found by FIXDISK is bad, this file will
be treated just like an ordinary file instead of a special BADSPT
file.

File entry at word XX does not reference an ACL Or Access

Categoru

The ACL pointer of a file entry doesn’t point to a valid ACL or
Access Category. If —=fix, it is changed to the default value.

Access Category at word XX does not reference an ACL

The ACL pointer of an Access Category doesn’t point to a valid
ACL. If —=fix; it is deleted,

Access cateqory at word XX is not pointed at by ACL it ooints 8

The ACL pointer of an Access Category points to an ACL which
doesn’t point back to it. If —fix, it is deleted. v O .

File entry at word XX is not pointed at by ACL it points v& ii

e

The ACL pointer of a file entry points to an ACL which » daﬁéa
peaint back to it If —fix, it is set to the default value.

ACL. at word XX does not point to a file entruy or Access Cateqory

The owner pointer of an ACL doesn’t point to a file entry or
Access Category. If -fix, the ACL is deleted.

ACL a3t word XX is not pointed at by object it points to

The owner pointer of an ACL points to an object which doesn’t
point back to it. If —fix, it is deleted.

Cannot allocate segqment for XX

Fix_disk tried to dynamically allocate a segment for XX and

P

failed. Fix_disk will abort.

o ad o
SUBJECT: BOOTSTRAP PROCEDURES Bl
TIME : 15 MINUTES i J' ;
MATERIAL: SUPPLIED L
OBJECTIVES: ¥
b
UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO:
1. USE THE NEW BOOTSTRAP PROCEDURE TO INVOKE PRIMOS 'ﬁiﬁ.
2. DESCRIBE THE DIFFERENT OPTIONS OF THE BOOTSTRAP FEATURE “i;j 2g%§§“_-
a. SWITCH 4. 3 ;;ﬁﬂ :f

b. SWITCH 5.

*

Wl il

NEW BOOTSTRAP PROCEDURE
- A MORE AUTOMATED BOOT PROCEDURE
- USES SWITCH SETTINGS 4 AND 3
- NEW COMMAND INSTALLED IN CMDNCO: PRIMOS

- SWITCH 4 ON AND 3 OFF
Do not prompt for ‘Physical device=’

EXAMPLE:

CP> SYSCLR
CP> BOOT 10114

OK: : Now at PRIMOS II
P PRNYS , PRRUN '
- SWITCH 4 AND 5 BOTH ON
Fully automatic

Primos is brought up to the SET_DATE command

EXAMPLE 2 | o
S ‘
CPy SYSCLR s

CP> BOOT 14114 $
0K ; P

0.1 BOOTSTRAP PROCEDURE

At REV 19, Primos may be coldstarted using a procedure that takes
the system from depressing the start switch to Primos in one step.
This procedure uses additional front panel switch settings (switches
4 and 5) and a new command in CMDNCO (PRIMOS).

| AR R | Introduction

At REV 18, three software systems are wvused during coldstart.
They are DBoot, Primgs II and Primos. At REV 19 a fourth system

has been introduced, the PRIMOS command. It is installed in
CMDNCO and is instrumental in simplifying the coldstart
procedure, Subsequent sections of this document specify in

detail the software required and procedures to be followed to
perform a simplified coldstart at REV 19.

0.1.2 Software Required

L Boot — must be from a REV 19 Master Disk or created by a REV
19 MAKE.

2 Primos II - must be REV 19 dated 11/18/80 or later. Must be
installed in DOS>#D0OS&4.

2 PRIMOS command installed in CMDNCO.

o Primos runfiles installed in a directory on the partition to

be coldstarted.

0.1.3 Use of Front Panel Switches 4 and 5

-
&
A
.

Switch 4 down, switch 5 down. No change #from REV 18 »
procedure. ’ 3 Ay,
y '..‘ ‘ ‘1
2 Switch 4 up, switch 5 down. Do not prompt s
‘Physical Device ="’. 4

2.1 Front panel switches are interrogated by software and. the
device is automatically started wup. ‘For example, - if
coldstarting from physical device &0, switéh setting 19411 '%
will startup disk 460, 1060, etc. e.g. you cannot start uvp g
disk 20060 this way. Switch setting 10134 will start IT“F
disk 660, 1260, etc. Note this may be used only ‘with the -
top (head O) partition on a disk. ' W o

2.2 When the system prompts ‘OK: ’, it is running Primos fI. Aty &
this point the PRIMOS command is used to bring up Primos.
The command is issued as PRIMOS <pathname>, where {path@?mea nfk

Sl

~»

is the pathname of the directory containing the run files
for Primos. The Primos command rTemembers the pathname so
the next time typing just PRIMOS is sufficient. Initially
the pathname defaults to PRIRUN. :

3 Switch 4 up, Switch 5 up. Fully automatic.

Physical device is automatically started up from front panel
switch setting as above. y

Primos is then automatically brought up from the pathname
saved in the PRIMOS command.

0.1.4 Example of Coldstart using Device 460

Assume Primos runfiles are in a directory called OPSYS.

o PowerT on.

o Turn rotary selector to Stop/Step

o Master clear.

o Turn Address/Data switch to Address.

o Set ‘10114 in the sense switches
{switches 4, 10, 13, 14 up).

g Turn selector to load.

o Press Start.

o Turn selector to Run.

o Type PRIMOS OPSYS on the system console.

To reboot the system:

o Turn rotary selector to Stop/Step

o Master Clear

o Turn Address/Data switch to Address. .

o Set ‘14114 in the sense switches N o
{switches 4, 5, 10, 13, 14 Up) i -?... -

o Turn selector to Load. : s

o Press Start. 4

¢ Turn selector to Run. i - - %.

SUBJECT: 'FUTIL REPLACEMENT COMMANDS
TIME : 20 minutes
MATERIAL: Supplied

OBJECTIVES:
UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO:

1. Effectively use the FUTIL replacement commands to copy and
delete files, directories, and segmented direﬁtories from
the file system. .

2. Present the new features to prospective customers

3. Describe the new commands

a. COPY ; b. DELETE
c. List_directory d. RWLOCK

e. PROTECT

i o o

NEW FILE UTILITY COMMANDS - COPY

COPY <source_pathname> [<target pathname>] [<{conirol args>]

{source pathname>
A standard treename.

(target pathname>
A standard freename. If omitted, directory is current;

filename is from <source pathname’.

<control args>
-Query, -No_Query <PU4#MTTM0h b iy, N ey
-LeVel {decimal number>

-RePorT

" -DeLete |
-DAM, -SAM
-FORCE
-INCremental

f-w_lr}
REPLACE (ot <ot these HoTH

% b

NEW FILE UTILITY COMMANDS - MOTIVATION

- To provide an easier to use sef of file vtility commands.

ol réalize increased user productivity.

- To provide support Fbr new features such as acls and quotas.

- Implemented fo replace futil functions, and support new features.
- Futil and Listf continue to work, but not with acls or quotas.

- Implemented as EPFs.

NEW FILE UTILITY COMMANDS - COPY

Ccontrol_args> for attribute copying

~DTH Preseryve original date/fime
-PROtect Preserve acl protection
-QUOTA Copy maximum quota
-RWLock Preseryve rwlock setting
-Copy All Preserve all of the above

-DTM, -PRO, -QUOTA, -RWL

- Cannot use COPY on MFD, BOOT or DSKRAT.

~ = Usage under password directories requires owner access to
(farget_pathnames. If attributes are to be copied they are
protection keys and passwords (directories only). Ouwner
access to <source_pathname> is required if -DL is specified,
or if a password protected directory is copied.

N

NEW FILE UTILITY COMMANDS

= LORY
Copy files/directories

- DELETE
Delete files/directories

- LD | _
List directory contents

- RWLOCK
Set read-write lock for a file/seqment directory
- PROTECT e v 0 fbtoncs Pessuronss eppedic
,9et protection for owner/non-owner on files/directories

NEW FILE UTILITY COMMANDS - DELETE

DELETE <target_pathname’ [4control args’]

Ccontrol args> |
~Query, -No_Query
-FORCE
-RePorT

- DELETE will not delete MFD, BOOT, DSKRAT.

- Wildcard expansion is controlled by command processor, will
query unless -no_verify is specified.

NEW FILE UTILITY COMMANDS - LD

LD [<target_object> [<wild cardss... 1] [<control args]

(target object> |
Specifies directory pathname, plus first wildcard name.

wild cards?
Additional wild cards.

ccontrol argsy .
=No_SORT, ~5SORT Dtm, ~50RT Name
-ReVerse
-5inGLe COLumn
-CATegory Protected [<category name>]
-DeFaulT Protected, -SPEC1fic_Protected
-DETail _
-PROtect, ~DTH, =ullE

NEW FILE UTILITY COMMANDS - RWLOCK

RWLOCK <farget pathname> <lock> -RePorT

{lock>

Specifies concurrency lock fo be set:

§1a Use system read/write lock (default)
EXCL N readers OR 1 writer

- UPDT N readers AND 1 writer
NONE N readers AND N wrifers

- Only applies to files and segment directories.

- Note: not compatible with SRWLOC.

NEW FILE UTILITY COMMANDS - PROTECT

PROTECT <{target_pathname> <ouner_access> {non-owner accesss -RePort

LO0WNer_aCCessr, <non-owner access.

NIL

R

W

D

RU

RD

WD

RUWD

- Only useful on password directories, or acl directories that
are converted back.

- Replaces the current PROTEC command, Note: not compatible.

NEW FILE UTILITY COMMANDS EPFs

- ALl the new futil replacement commands are implemented as EPF's
(Executable Program Format).

- EPF’s are built with a new loader called BIND, which produces
a new type of run file (suffix is .RUN) which may be resumed.

- EPF’s do not contain absolute addresses. They are recursive and
can be shared or relocated easily.

- Execution takes place in segments 4340...4377 of each user’s address
space. Marimum value for NUSEG is now 357,

- RLS releases the current static mode program. EPF’s must be
released separately. Breaking an EPF causes the file to remain
open until it is RL3'd. Beware of segment consumption.

- For internal use only. Beta fest beglnﬂfét Tev 19, \\ Full release
15 not commited at this time. A

1 --f",,. :

FILE SYSTEM UTILITY COMMANDS

1.1 INTRODUCTION

The following sections are intended to provide a complete
description of the file system utility commands. The commands are
designed to perform the following basic functions:

o File, segment directory, directory, and access category copuying.
o File, segment directory, directory, and access category deletioh;

o Setting the read/write lock for files and segment directories. 1

& ..{_g,.
i 5

Ty e

o Displaying the contents of a directory. R o
i

o Setting the protection keys for files and segment directories.
These commands are intended to Teplace, but are not compatible with,
the current FUTIL subsystem. See the section, New Command Processor

Features, for information about applying these commands to multiple
files or directories in a simple manner.

Document conventions

o Lower case text enclosed in angle brackets ("<" and '“}“)‘
represents an object whose actual value should be suhstit ed,
upper case text indicates a literal value. For example; o Q;”
means substitute a calendar date and "ALL" would mean use' ‘the
literal value "ALL",

o Text enclosed in square brackets ("[" and "J") represents Optlnmgl
ob jects. Two or more objects separated by spaces repre!‘__“
optional choices, two or more objects separated by vertical ha.*'
"i", Tepresent a choice of mutually exclusive options.

c objects followed by "..." represent multiple occurrences b?stpgﬁﬁﬁ i
objects. " ;iple

FILE SYSTEM UTILITY COMMANDS . paage

1, 2= GHEY

COPY will copy files, directories, segment directories, and access
categories.

Usage: COPY <source_object> [<{target_object>] [control_arguments...]

source ob ject

A standard treename specifying the location and name of the object
to be copied. Read (R) access is required on this object.

target ob ject

A standard treename specifying the destination and name of the
target object. If the “target_object is omitted, the target
directory is assumed to be the current directory, and the source
object name is used for the target name. Append (A) access is
required on the directory containing the target object. Delete (D)
access is required on the directory containing the target object if
the target object already exists. ;

b B Sl control argquments

Zero or more control arguments specified in any order from the
the following list:

—QUERY., -Q

Specifies that COPY 1is to request that the user resolve
unexpected or potentially dangerous situations. This is the
default mode of operation.

~NO_QUERY, -N@ - f%%;_

Specifies that COPY is NOT to request the wuser’s permission

but to attempt to resolve those situations in . the mosti

intuitive fashion.

=LEVELS, =LV L[ddpc>3

2 . 'J““_'ig
Specifies that COPY 1is only to copy down to the 1level.
specified by "dec" when copying a directory tree. “dec” is a

A

"

decimal integer from O to 999. If "-LEVELS" is omitted, t'i_ie":_‘:}g_a."

default is to copy the entire tree; iF Pdec™ A% omittadr'ﬁhe
default is O (only copy the top 1level, the directory entry
itself and none of its subentries). - fq;

=REPBORT, =RPT

R

Specifies that COPY 1is to report the Tesults of each

FILE SYSTEM UTILITY COMMANDS . pafie d P ¥

SR —— -

successful copy operation.
-DELETE, -DL

Specifies that COPY is to delete the source object once it has
been copied. The default is no deletion. This option
requires delete (D) access on the source directory.

-DAM
Specifies that all SAM files copied are to be converted to DAM
files. The default is to preserve the original file type.

-SAM
Specifies that all DAM files copied are to be converted to SAM
files. The default is to preserve the original file type.
=FORCE
Specifies that COPY is to force delete Tights for all
delete—-protected objects selected to be deleted. This
includes both a target object that already exists and the
source object if "-DELETE"” is selected. This argument is most

useful when overwriting a directory tree that may contain
delete protected objects. This option requires protect {P)
access on the appropriate directory. :

The default is to Tequest the wuser’s permission to force
delete an object, unless "=NO_QUERY" was specified, in,; which
case the protected object(s) will NOT be deleted.

»

—INCREMENTAL, -INC n
Specifies that COPY is only to copy those objects whose dump
bit is off (= 0). (I1.E. those +files that have NOT been
dumped to tape.) The default is to copy objects regardless of
the dump bit setting. .

This argument is intended to provide functionality similar ‘ to

that provided by the MAGSAV INCREMENTAL command.

Note that if & directory is the object of the cnmmqndbaalij“ﬂF.

entries within that directory are copied, regardless qFﬁ_thegf“;j”ﬁ

dump bit setting. el i . e
—REPLACE

Specifies that COPY is to only copy those objects which*ﬁéiist
in the target directory. ., |

FILE SYSTEM UTILITY COMMANDS . page 3

1.2.2 Attribute copying arguments

The following arguments specify which attributes of selected
objects are to be preserved or Teset by COPY. I none are
specified, the default 1is to use the system default. If one or
more are specified, only those attributes are preserved, the rest
will be reset to the system default.

The use of any of these arguments requires protect (P) access on
the appropriate directory.

-DTM

Specifies that COPY is to preserve the date/time modified
stamp of all source objects copied. The system default is to
reset the date/time modified to the current date/time.

When a directory is copied, the wuse of this argument will
cause the date/time modified stamp of each subentry in the
directory to be preserved. i

=RROTECT; =PRO

Specifies that COPY is to preserve the protection attributes
of all source objects copied. This is done by protecting the
target object with a specific access control 1list. The
defauvlt is to vse the default access in the target directory.

—-QUOTA

Specifies that when a directory is copied the maximum quota
information associated with it and any of its subdirectories
is to be copied also. The system default for maximum quota
information is no limit, i.e., there is no restriction on the
maximum directory size. "

‘.rv\l

~RWLOCK, —-RWL o

Specifies that COPY is to preserve the read/write locks ﬁf‘the_

source object. The default is to set the read/write locks to"

the system default.

Note that only files (i.e., DAM and SAM) afEESSEIEShE

directories have user alterable 1locks, for all other file
system types copied the read/write locks will havei the system

) , "

default. t s

-COPY_ALL, —CA

Specifies that COPY is to preserve all the attributes. It 48
the same as specifying "-DTM —-PROTECT —-QUOTA -RWLOCK".

FILE SYSTEM UTILITY COMMANDS . page e

el

—n et s AL U B e B e L e R S e

v

1.2.'3 Restrictions

o COPY will not allow the MFD, BOOT, or DSKRAT files of a MFD to

be overwritten. In order to «copy a boot file to a MFD the
user should first RESTore the new boot to memotTy and then SAve
it with the name "BOOT". Note that this restriction does not

apply when these files exist in other than a MFD.

1.2.4 Usage under password directories

Under password directories the requirement for access is
different. In all cases owner access is needed on the target
directory. Delete access is need on the appropriate file if COPY

is going to delete it (source if "-DELETE" and/or target if it
exists). I1f "-PROTECT" is specified then all the password parts
of protection are copied. Protection attributes include
protection keys (files, directories, and segment directories).
and passwords (directories only).

The system default for protection keys is rwd nil (owner has all
Trights, nonowner has none); for passwords owner is blank,
nonocwner is null. _

Copying the passwords of a directory requires owner Tights in the
source directory, if that directory is a password directory. R
“the user does not have owner rights COPY will request the uUsenr’s
permission to copy the directory. If "—-NO_QUERY" was specified,
the directory will be copied without requesting the user’s
permission. If the 'directory 1is <copied, it will acquire the
system default passwords. :

1.3 DELETE

DELETE will delete files, directories, segment directories, and
access categories.

Usage: DELETE <target_object> [control_arguments...]

target ob ject

A standard treename specifying the location and name of tﬁéiqueﬁﬁfr
to be deleted. Delete (D) access is required on the target
directory. R

FILE SYSTEM UTILITY COMMANDS . page ' 5.

.30 control arquments

Zero or more control arguments specified in any order from the
following list:

=GUERN: "I—0
Specifies that DELETE is to request that the user resolve

unexpected or potentially dangerous situations. This is the
default mode of operation.

-NO_QUERY., —-NQ Specifies that DELETE is NOT to request the user’s

permission but to attempt to resolve those situations in the
most intuitive fashion.

=REFPCORT,. —=RPT

Specifies that DELETE is to report the results of each
successful deletion.

-FORCE

Specifies that DELETE 1is to force delete rights for all
delete—protected objects selected. This argument is most
useful when deleting a directory tree that may contain delete
protected objects. This option requires protect (P) access on
the appropriate directory.

The default 1is to request the wuser’s permission to force
delete an object, unless "—-NO_QUERY" was specified.

1.9 2 Restrictions

DELETE will not delete the MFD, BOOT. or DSKRAT files in a MFD.
Note that DELETE may be used to delete these files if they
exist in other than a MFD.

o

1.3.3 Implicaticns

© Query will always be requested for directory and; adtégé

category deletion, unless "-NO_QUERY" was specified.

o Verification is requested of the wildcards handled bﬁ' the
command pToOCEsSsOoT. The command processor option "=NO_VERIFY"
will suppress this. ' ' '

FILE SYSTEM UTILITY COMMANDS pagRs T a

1. 3.4 Usaqge under password directories

Under password directories the requirement for access is
different. In all <cases delete access is needed on the target
object. If the file does not have delete then owner access is

needed on the target directory.

1.4 LD —- List Directoru

LD displays a directory and, optionally, the various attributes pfs
entries in the directory. The user may select entries based on all}
the standard command processor ways and alsoc by how the object isd
protected. g

Usage: LD [<target_object> [<wild_cards>. .. 1] [control_arguments...]

target object

Specifies both the directory to be listed, and the first wildcard
name. For example, "a>b>@. 1ist" would specify entries in the
directory A>B whose names match "@. LIST". If pathname 1is omitted,
"@@" is assumed; that is, all entries in the current directory are

selected.

wild cards

Specify additional wildcard names. An entry is selected if it
matches either the entryname part of pathname or one of the
wild_cards.

1.4.1 control arguments

Zero or more control arguments specified in any order from the
following list:

—-NO_HEADER, -NHE

specifies that the header line is not toc be output. The
header line contains the pathname of the directory listed, the
access rtights (in parentheses), the records wused by this

directory if available, and the quota used if this is a ‘quota
directory. Y SR, FEUULIRE

=SPECIFIC PROTECTED: —SPECP

specifies that those entries that are specific protecteﬂ mill.@
be selected. g T

—-DEFAULT_PROTECTED, -DFTP

specifies that those entries that are default protected will

FILE SYSTEM UTILITY COMMANDS page A% 7?

be selected.
—CATEGORY_PROTECTED, —CATP [<{cat_name>]

specifies that those entries that are protected by the access
category "cat_name” will be selected. “r0 "cet name” is
missing then all entries that are protected by access
categories will be selected.

—=NO_SORT, -NSORT
Specifies that the entries listed not be sorted. The default
is to sort by ascending NAME within TYPE. TYPEs are always
sorted according to the order: file,. segment directory,
directory, access category.

—SORT_DTM, -SORTD

specifies that the entries be sorted by descending DTM within
TYPE, =SORT_NAME must not also be specified.

=SORT_NAME, —-SORTN

Specifies that the entries be sorted by ascending NAME only
(not within TYPE). -SORT_DTM must not also be specified.

-REVERSE. -RV Ty

Specifies that the sort order be reversed from its default.
Note that the sort order of TYPEs is never affected.

=RETAIl, —DET

Specifies that all attributes be displayed for each entry
selected. From left to tight these are: y

access Tights available to this wuser (for password
directories, the protection keys are displayed). 2

™,

size of entry in physical disk Tecords.

quota of entry in physical disk Trecords (d;recfd§i€§?;

only).

type of entry. j;uai‘
setting of concurrency lock oh entry (" " for sgétem.* e
"excl®” for N readers or 1 writer, "updt" for =N readers .

and 1 writer, and "none" for N readers and N writers). g

g
I

incremental dump switch ("dmp" if the entry has be?p;f
dumped). T

delete—protection switch ("pr" if protected). .

FILE SYSTEM UTILITY COMMANDS

date—time modified.
name of entruy.

and type of protection (name of access category
protecting entry. or (Specific) for specific protected,
or blank for protected by default);

The default output format is to list only the name of each

entry. four across. Te print a subset of "detail" format
information, use one or more of the following options.

=FRETECT, —PRD

Specifies that protection information {access mode,
delete—protect switch, and type of protection) be printed for
each entry.

-DTM
Specifies that date—-time-modified be printed for each entry.
=S1ZE
Specifies that size information (size of entru, quota for
directories only) be printed for each non-access category
entry. A size of -1 will be reported for any entry for which
the user does not have R (or L) permission.
—SINGLE_COLUMN, -SGLCOL
Is useful only if the default (names only) format is used. In

this case, specifies that names are to be printed one per line
instead of four per line.

1.4. 2 Usage under password directories

y -
Under password directories the access listed is the protéttion i
keys as owner nonowner. '

1.5 RWLOCK

RWLOCK will set the read/write concurrency locks Far;Files.aﬁﬂ '
segment directories. b ' ’ |

Usage: RWLOCK <target_object> [<lock>] [control_arguments...3 = ,

target ob ject

A standard treename specifying the object whose read/write ;lacgn

FILE SYSTEM UTILITY COMMANDS ; pag?fx“ Bt

to be modified. This command required protect (P) access on the
target directory.

lock

Read/write lock, may be one of the following:
SYS - use system read/write lbck (default)
EXCL — N readers OR 1 writer (exclusive OR)

UPDT = N Teaders AND 1 writer
NONE - N readers AND N writers

1. 90K contrel argquments

Zero or more control arguments specified in any order from the
following 1list:

-REPORT: —=RPT
Specifies that RWLOCK 1is to report the rtesults of each

successful lock change operation.

1.5.2 Restrictions

o Only files and segment directories currently have vser
alterable read/write locks. If a@a wildcard name is specified
with no file type selection arguments, only files and segment
directories will be selected.

1.5.3 Usage under password directories

Under password directories the requirement for access | is
different. In all cases owner access is needed on the target

directory.

1.6 PROTECT

Set protection keys for files, directories, and segment directorigﬁ;
This command is useful only in password directories. ey N

Usage: PROTECT <target_object> [{owner> [<{nonowner>11]
Lcontrol_arguments. ..]

taraget ob ject

Standard treename cspecifying the object <to be protected. OQuner
access is needed on the target directory.

FILE SYSTEM UTILITY COMMANDS page 1?’ .

e

gwner, nonowner

g Protection keys, must be selected from the following list:
nil - no access (default) rw — read/write access :
T — read access rd — read/delete access TR
w - write access wd — write/delete access P
d — delete access Trwd — rtead/write/delete access .
o e
Note: the order of letters is not important. 1.E. "wd" 11‘ the h“
same as "dw". 3 ;
If either owner or nonowner is omitted, the default is nil - no
access.
1.6.1 control arquments X
Zero or more control arguments specified in any order from the
following list:
—REPORT. -RPT
Specifies that PROTECT is to report the results of each
successful protection operation.
1.6.2 Restrictions
o PROTECT requires protect (P) access in the target directory.
1.6.3 Implications
o Although the PROTECT command may be used to modify the
protection keys of objects in ACL directories, the keys are
ignored when accessing those objects. But if the directory
were converted back to a password directory., the changed
protection keys would be in effect. pe
o If a wildcard name is specified with no file +type selection
arguments, the default will be to select files, directories;
and segment directories. EORET

FILE SYSTEM UTILITY COMMANDS . page g 0"

	Outline
	1
	2
	3
	New Features
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	User Profiles and ACLs
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	Disk Quotas
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	Badspot Handling
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	FIX_DISK Command
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	Bootstrap Procedures
	124
	125
	126
	127
	128
	FUTIL Replacement Commands
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149

