
   . 

  

\ 

@ SUBJECT? PRIMOS REV. 19 ROAD SHOW 

TIME : 2 Days 

MATERIAL: Supplied 

OBJECTIVES: 

UPON COMPLETION OF THIS COURSE THE STUDENT SHOULD BE ABLE TO: 

ale Install PRIMOS rev. 19 at customer sites 

2. Describe and implement User profiles on a customer machine. 

3. Describe and install ACCESS .CONTROL_LISTS on a customer machine. 

4. Describe and install DISK QUOTAS on a customer machine. 

2: Use the new FIX_DISK command to convert a disk to rev. 19. 

6>. Explain the new BADSPOT handling feature. 

a Ze Explain the new BOOTSTRAP procedure. 

.e Sal Use the new FUTIL REPLACEMENT commands. 

3. CORY b. DELETE 

c. LIST DIRECTORY, d. RWLOCK 

e. PROTECT 

9. Describe the new COMMAND PROCESSOR functionality 

a. Wildcarding b. Iteration 

c. Name Generation J. Teena 
8 

10. Describe briefly, the INTERNAL modifications 

11. Rebuild Laos by invoking the supplied command files. 

12. Describe the rev. 19 NPX features. 

13. Explain the REMOTE JOB ENTRY enhancements 

14. Define the changes to DBMS. ry 

a 415. Describe the remaining changes to PRIMOS rev. 19. 

atta. Aen y 

 



10. 

ie 

12. 

13. 

14. 

15. 

ao. 

REV19 ROAD SHOW OUTLINE 

INTRODUCTION 

A. NEW FEATURES 

USER PROFILES 

A. TERMS 

DISK QUOTAS 

BADSPOT HANDLING 

FIX_DISK 

B. ACCESS CONTROL LISTS 

NEW BOOT STRAP PROCEDURE 

FUTIL REPLACEMENT COMMANDS 

A. COPY 

C. LIST_DIRECTORY 

ies, PROTECT 

COMMAND PROCESSOR 

A. WILD CARDING 

Cc. NAME GENERATION 

INTERNAL MODIFICATIONS 

A. QUITS 

c. EPFs 

RESOURCE EXTENSIONS 

PRIMOS BUILD CPL FILES 

See Persie 

D. RWLOCK 

B. ITERATION 

D. VreewerkinG 

B. LOGOUT NOTIFICATION 

D. _ LOGIN CHANGES 

CONVERTING TO PRIMOS REV. 19 

NPX 

RJE 

DBMS 

REMAINING REV19 PRODUCTS



c 

AM 

PM 

REV. 19 ROAD SHOW DAILY TOPIC MAP 

DAY 1 DAY 2 

INTRODUCTION ' 

USERSPRORIEES 1 : 

DISK QUOTAS i 

BADSPOT HNDLG = 

FIX_DISK 1 

BOOTSTRAPPING 

FUTIL REPLACEMENT | 

COMMAND PROCESS. i RJE 

PRIMOS BUILD i



C\
 

PRIMOQS - Revision 19.0 

= SECURITY 

USER PROFILES 

ACCESS CONTROL LISTS 

DISK QUOTAS 

EASE of USE 
COMMAND PROCESSOR ENHANCEMENTS 

FILE UTILITY COMMANDS 

. INTEGRITY 

“ETE DISK 

‘ IMPROVED BADSPOT HANDLING 

; MISCELLANEQUS ENHANCEMENTS © 

INTERNAL CHANGES



— PRIMOS REV. 19 NEW FEATURES 

ACCESS CONTROL LISTS 

ASSIGNABLE AMLC LINE IMPROVEMENTS 

BADSPOT HANDLING 

COMMAND PROCESSOR EXTENSIONS 

CPL PHANTOMS 

CROSS PROCESS SIGNALLING (Internal use only) 

DISK QUOTAS 

EXECUTABLE PROGRAM FORMAT (Internal use only) 

FILE SYSTEM UTILITY 

FIX DISK 

ENHANCED FORCEW PRIMITIVE



PRIMOS REV. 19 NEW FEATURES 

THE HELP COMMAND 

STATIC ON UNITS (Internal use only) 

STATUS COMMAND CHANGES 

MPC4 SUPPORT 

USER PROFILES 

NEW ERROR CODES 

PRIMOS INTERNAL LOGIC MODIFICATIONS 

CORRECTED REV. 18 POLERS



NEW FEATURES FOR APPLICATIONS PROGRAMS 
  

Asynchronous Signals 

- Rev 18: quits user break, control-p 

cpu timers cpu seconds watchdog timer (see limits) 

alarm teal time seconds watchdog (see limits) 

- New signals at rev 19 

logout$ 1-2 minute warning before force logout 

ph_logo$ a user initiated phantom has logged out 

cps cross process signals (not released) 

~ BreakS routine only disables quits 

- To insure atomic code, create condition handlers for all 

asynchronous signals, or use SWSINT (documented below)



NEW FEATURES FOR APPLICATIONS PROGRAMS 
  

SWSINT (KEY, SELECTION, VALUE, ERCODE {, OUTER_RING]) 

NOTE: This is an unreleased call. The calling sequence and/or 

fuctionality is subject to change. It is documented here 

to provide a simple mechanism to control asynchronous 

Signals by third-party sub-system software. 

SWSINT is used to control the enable/disable status of the 

software interrupts. It does this by setting/resetting the 

enable bit(s) of the software interrupt ring control words 

located in pudcom. (For terminal quit, BREAKS is called to 

enable/disable.) The format of this word is: 

dcl 1 b_swityp based, 

2 mbz bit(10), 

2 logout bit(l), /* logout condition #/ 

2 cps bit(l), /* cross process signalling #/ 

2 cpu_time bit(1), /* cpu timer #/ 

2 alarm bit(1), /* peal time timer +#/ 

2 lon biti), /# phantom logout #/ 

2 terminal bit(1)i /* terminal quit #/



NEW FEATURES FOR APPLICATIONS PROGRAMS 
  

SWSINT (continued) 

SWSINT is able to set on, set off, or simply read the status of 

the interrupt type chosen by its caller. The type is chosen by 

either setting a bit(s) on in the input argument, SELECTION, 

or using one of the "all" keys. For read, the current setting 

is returned in the argument, VALUE. 

The valid keys for specific bit selection(s) are 

kgon - turn interrupt(s) on 

Soff - turn interrupt(s) off 

k$rdon - read present status then turn interrupt(s) on 

krdof - read present status then turn interrupt(s) off 

k$read - tead present status 

The valid key for non-specific bit selection are 

kSalon - turn on all interrupts 

k$alof - turn off all interrupts 

k$raon - read all status then turn on all interrupts 

koraof - read all status then turn off all interrupts 

k$rdal - read present status of all interrupts



NEW FEATURES FOR APPLICATIONS PROGRAMS 

SWSINT (continued) 

A user may enable/disable any interrupt(s) in an outer ring by 

including the optional QUTER RING argument. If it is included 

it’s value currently must be 3. Software interrupts are 

normally on in the outer rings 

Abnormal conditions: Bad key. Bad parameter. Buffer too 

small.



NEW FEATURES FOR APPLICATIONS PROGRAMS 

Command Processor 

- Static mode programs all features enabled, no verify for 

wildcard selections is the default. to. stare mnode preqrame 
  

- CPL programs only simple iteration enabled. 

- NXS__ only Simple iteration enabled. 

- NWS only treewalking enabled. 

- Special command processor arguments: 

Wildcarding: before, -after, -file, directory, -acat 

~seqment directory, -verify, -no_verify 

Treewalking: walk from, -walk_to, -bottom_up



& 

NEW FEATURES FOR APPLICATIONS PROGRAMS 

Attach-Scan 

- All local disks are searched before all remote disks 

(in ldev order). 

- If user does not have Use access to the MFD, then that partition 

is not searched. 

- If the user does not have List access to the MFD and does not 

have sufficient access to the UFD, then the search continues 

(becuase ‘no information’ is returned). 

- Search stops on any ‘bad password’ and ‘insufficient access rights’ 

- New error code ‘Top-level UFD inaccessible or not found’. 

‘Not found’ will never be returned by an attach scan at rev 19, 

Disk Quotas 

- Quota checking can be performed by the program, and appropriate 

actions taken (i.e. closing files, trying other UFDs). 

- New error code ‘Maximum quota exceeded’



NEW FEATURES FOR EXTERNAL LOGIN 

- During login, CMDNCODLOGIN is resumed. (. SAVE suffix not allowed) 

- During logout, CMDNCODLOGOUT is resumed if it exists, 

else CMDNCODLOGIN 

- Login-over-Login is defined as 

Rev 18: change of user id (no accounting meters reset) 

x Rev 19: logout followed by login 

- New features at rev 19: 

Project Name: prjid$ returns name of user’s login project 

ACL Groups: getids returns ACL groups (and user_id) 

Disk Quotas: check for free records before writing accounting 

or metering files 

Disk Usage: qsread returns record-time-product meter to account 

for disk usage over time within a quota sub-tree 

- LOGIN. @ (CPL, COMI, SAVE) is rasumed from user’s initial attach 

point following execution of external login program





SUBJECT: USER PROFILES and ACLS 

TIME : 2 and 1/2 HOURS 

MATERIAL: SUPPLIED 

OBJECTIVES 

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO 

i. 

10. 

ate 

DESCRIBE AN ACCESS CONTROL LIST 

a. ACCESS CATEGORY b. SPECIFIC ACL 

c. DEFAULT ACL 

USE THE SET_ACCESS COMMAND TO PROVIDE ACL PROTECTION ON THE 

FILE SYSTEM 

DEFINE AND USE THE PRIORITY ACL 

EXPLAIN HOW TO CONVERT TO AN ACL DIRECTORY 

DESCRIBE THE USER PROFILE MECHANISM 

DESCRIBE THE CONCEPT OF PROJECTS 

INVOKE AND USE THE EDIT_PROFILE UTILITY TO ADD USERS, PROJECTS 

AND ACL GROUPS TO THE SYSTEM. 

DESCRIBE A DEFAULT PROJECT 

DEFINE THE ROLES OF A SYSTEM ADMINISTRATOR, PROJECT ADMINISTRATOR 

EXPLAIN WHAT A PROFILE IS AND HOW THEY CAN BE USED AT EACH SITE. 

ACTIVATE REMOTE USERS OF THE SYSTEM BY REGISTERING REMOTE IDs



DEFINITIONS 

ACCESS CONTROL LISTS 

ACCESS GROUP NAMES 

USER PROFILES 

USER ID 

USER REGISTRATION 

PROJECT 

INITIAL ATTACH POINT



ACCESS CONTROL LISTS - MOTIVATION 

PASSworrs dee AcTWE AT EACH One ATTACH 

- To improve file system security,  %<¢ Passwe 

- To provide an easy to use interface for user’s and programs 

fo set and modify access, 

- To interact with user profiles to provide common access for 

Specified groups of users under administrative control. 

- Jo provide an extensible system for the specification/ 

enforcement of access rights. 

- Passive protection mechanism versus passwords which must 

be specified by users/programs.



ACCESS CONTROL LISTS 

- New protection mechanism to control access to files and 

directories. Alternative to the current password scheme. 

- An Access Control List (ACL) is a list of users and access 

rights to one or more files/directories. 

Romeo : Tf (Romeo may read files) 

Juliet: tw (Juliet may tead and write files) 

Muppet: 1 (The group of users ‘muppet’ may list 

the contents of the ufd) 
$rest ‘° none (All other users have no access) 

ACLS may be specified for 4 single file or a set of files. 

- ACLS are enabled on a per-mfd basis. Password directories can 

be subordinate to ACL directories not vice versa 

- Like user profiles, ACLs default to closed. A user must 

specifically be given access - NONE is default 

- Requires rev 19 disk format.



ACCESS CONTROL LISTS 

An access pair consists of 

Cidentifier? : “access rights? 

Identifier 

The identifier may be 

- A user_id contained in the user profile data base 

- An ACL group, which is a special name that begins with a ‘.’ and 

specifies a group of users which share common access rights. 

For example, 

.MUPPET specifies KERMIT 

MISS PIGGY 

FOZZIE_BEAR 

(ACL groups are specified in a user's profile.) 

- The special identifier ‘Srest’ which signifies all other users.



Access Rights 

RIGHT 

Protect 

Delete 

Add 

List 

Use 

Read 

Write 

ALL 

NONE 

APPLIES 

Directories 

Directories 

Directories 

Directories 

Directories 

Files 

Files 

Both 

Both 

ACCESS CONTROL LISTS 

MEANING 

Accesses and attributes may be changed. 

Entries may be deleted from the dir 

Entries may be added to the dir. ae 

The contents of the dir may be read. hes 

The dit may be attached to 

The file contents may be read 

The file contents may be changed. 

PDALURWX. 

Explicitly deny all access



ACCESS CONTROL LISTS 

Useful Combinations of Access Rights 

ur 

lu: 

Lut: 

luta: 

lutwad: 

all: 

none: 

Required for the user to access anything at this directory 

level ot below. Allows the user to attach. 

Allows the user to attach and display the names of file 

system objects. 

A good combination for trusted users. Allows user to 

peruse a directory and its contents, and to make copies. 

Allows the user to also create new files and directories 

in a non-destructive manner. Existing files cannot be 

changed. 

A good combination where access is controlled by an 

administrator, but allows the user to do ‘everything’ - 

read and write files, add and delete entries. The user 

cannot change the protection on any object. 

A standard combination for the system administrator or 

‘quner’ of an object. Allows protection to be changed, 

and disk quotas to be set. 

Prevents all access.



ACCESS CONTROL LISTS - Calculating Access 

WHEN IS ACL ACCESS CHECKED? 

- During an attach operation 

- During a file open operation 

2 oe if b



ACCESS CONTROL LISTS - Calculating Access 

HOW IS ACL ACCESS CALCULATED? 

- Password owner/non-owner access rights are mapped to ACL rights: 

OQuner: = PDALU 

Non-owner: = LU 

Read: = R 

White = W 

Delete: = D 

- Calculate access as follows: 

Priority Access: if priority_acl then 

if user_in_pacl then 

get access from pacl 

User Td: else if user_id in_acl then 

get access from acl 

ACL Groups: else if user_member of group(s) then 

get access for each member group 

logical-or these accesses together 

$Rest: else if $rest then 

get access from $rest pair 

alse no access ;



ACCESS CONTROL LISTS 

There are two kinds of ACLS: Specific and category. 

Specific Protection 

There if a unique acl associated with a single file/directory. 

The acl is accessed through the name of the object it protects. 

ee AGL 4 Pep eeGln ess 

t t or i t 

1 my. uFd 4 | a. file | 

set_access my.ufd “acl? set_access a. file “acl? 

\ ae 
Sag



ACCESS CONTROL LISTS 

Category Protection 

There is a file system object called an access category that 

protects one or more files/directories. The acl is accessed by 

the name of the access category. When the access category is 

modified, the access rights for all the files/directories 

protected by the acl are changed 

set_access private. acat <acl>



ACCESS CONTROL LISTS 

Default Protection 

If no specific or category protection is specified, then the 

File/directory 15 protected by the acl associated with the 

parent directory. New files are protected by default acl. 

i junk. ufd | 1 memo. file ; 

set access my. ufd “acl?



ACCESS CONTROL LISTS 

NEW AND MODIFIED COMMANDS 

SET_ACCESS, SAC <target _pathname? 

“target pathname “access control list» 

Gtarget_pathname? -LIKE “reference? *% safe tees 
Ctarget_pathname> -CATegory “access category? 

<target pathname? 

Pathname of file, directory or access category to protect. 

faccess control list» 

A list of access pairs - “identifier>:Caccess rights2. 

Cpefereances 

Pathname of a file, directory or access category. 

faccess_categoryy 

Name of an access category. Supported suffix is ‘.acat’. 

- Used to set ACL protection for <target_pathnamey. 

- If <target_pathname? is a password directory, convert to an acl 

directory.



ACCESS CONTROL LISTS 

NEW AND MODIFIED COMMANDS 

- If only “target_pathname> is specified, then default access is 

sa In this case, target may not be a mtd. 

- Protect access is required for the directory; or the directory 

containing the file or access category. 

- If not otherwise specified, $rest:none is implicit in every acl. 

EDIT_ACCESS, EDAC <target_pathname? “access control list? 

NM - Used to modify/create an acl. 

- The access pair for each new identifier in the is added to 

the target's acl. 

- Each existing identifier has its access changed in the 

farget’s acl to be the specified access pair. 

- If an access pair is specified with no access rights, that 

access pair will be deleted from the target’s acl.



ACCESS CONTROL LISTS 

NEW AND MODIFIED COMMANDS 

LIST_ACCESS, LAC [<target_pathname?] 

- Used to list the acl protecting <target_pathnames. 

- If <target_pathname> is omitted, then the acl protecting 

the current attach point is listed. 

- lf a priority acl is in effect, then it is listed first. 

- List access is required to the directory that contains 

the protected target. 

REVERT _PASSHORD 

- Used to convert an acl directory back to a password directory. 

- Converts the current directory back to 4 password directory, 

- Protect access is required.



ACCESS CONTROL LISTS 

NEW AND MODIFIED COMMANDS 

SET_DELETE, SDL “pathname? {-PROTect | -NoPROTect} 

“pathname? 

Name of file or directory to protect. 

-PROTact 

Set delete switch to prevent deletion. 

-NoPROTect 

Parmit deletion. 

- Used to protect “pathname? from accidental deletion. 

~ Delete access is required to set the delete switch. 

- The switch cannot be used on access categories.



ACCESS CONTROL LISTS - Directory Structure 

- A directory is a header followed by a bunch of entries. 

- ACLS are embedded in the directory itself. 

I Entry 

=
.



ACCESS CONTROL LISTS - Directory Structure 

DIRECTORY ENTRY TYPES 

- Directory Header 

- Vacant Entry: Unused hole in the directory. 

- Normal Entry: Describes a file: SAM 

DAM 

SEGSAM 

SEGDAM 

of a directory: ACL 

Password 

- ACL Entry: Set of access pairs. 

- Access Category: Named ACL. Always points to an ACL e



ACCESS CONTROL LISTS - PRIORITY ACLS 

- Mechanism to allow the system administrator or operations staff 

to set special overriding access on the file system, 6.9. for 

backups. 

- A priority acl may be specified from the system console for any 

partition on the system. 

- The priority acl is checked first when computing a user’s access 

Tights. 

- The $rest:none access pair is not implied in a priority acl. 

%



ACCESS CONTROL LISTS - PRIORITY ACLS 

SET_PRIORITY_ACCESS, SPAC “partition name> “access control list 

- Sets a priority ACL on a partition. 

- If $rest identifier is given as part of “access control list> 

then the access rights given by that id override any other 

access control in effect on the partition. 

- Can only be executed from the system console or by the 

system administrator. 

LIST _PRIORITY_ACCESS, LPAC “partition_name? 

- Lists any priority acl on the partition. Should only be used 

when List ACcess cannot be used. 

REMOVE PRIORITY ACCESS, RPAC “partition_name> ~ 

- Removes the priority acl on the partition. 

- Can only be executed from the system console or by the 

system administrator.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing ACLs 

- Protect files and directories 

- Allow the setting of disk quotas. Protect access to 

the parent directory allows imposing quotas on subdirs 

SA may control top-level quotas, 

PA may control quotas on sub-directories. 

- Allow installation of new commands/libraries. Add 

access is required to CMDNCO or LIB to add new files 

Note, delete access is also required to COPY in a 

new version of an existing file. 

- May prevent execution of certain external commands. Any 

command in CMDNCO can be ACL’d to prevent read 

access $0 any user or group of users. This prevents 

execution of the command 

- Allow reversion of 4 password directory to an ACL 

directory requires protect access to the ufd.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing ACLs 

- The SA/PA may want to prevent a user from changing the ACL 

access to his/her initial attach point, but still allow 

the user to specify ACLs for any sub-directories of the tap. 

This is useful to force some minimal access to a user’s utd 

say for the PA or project members 

Sa ee pa: all 
| project_alpha i user: U cannot change ACLS here 

eee ee alpha: u 

——— pacall 

1 user i user:all cannot change ACLs here 

= alpha: lur 
E \ 

iFilgi 1 dity can assign ACLS here 

- [f a user does not have protect access to his/her 

ufd, then no ACLS can be assigned to any files or 

sub-directories. This is useful in a tightly controlled 

system where the SA or PA wants full control (at a cost 

af more administrative work).



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Useful Combinations of Access Rights 

lu: 

lur: 

luta: 

lutwad: 

all: 

none: 

Required for the user to access anything at this directory 

level ot below. Allows the user to attach. 
Rringia must Be ‘U' lw Supetion DID Te AIO Usen TR SET ONY 

ACA, 

Allows the user to attach and display the names of file 

sustem objects 

A good combination for trusted users. Allows user to 

peruse a directory and its contents, and to make copies. 

Allows the uset to also create new files and directories 

in a non-destructive manner, Existing files cannot be 

changed. 

A qood combination where access is controlled by an 

administrator, but allows the user to do ‘everything’ - 

Tead and write files, add and delete entries. The user 

cannot change the protection on any object 

A standard combination for the system administrator or 

‘quner’ af an object. Allows protection to be changed, 

and disk quotas to be set 

Prevents all access



- 

STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing ACL Groups 

~ Can be specified in a user’s system profile and/or project profile. 

~ A user_id becomes a member of the ACL groups in his/her system 

profile during every login, regardless of the project_id. 

These are often used for global system access. For example 
Super_user = could give ALL access to system ufds 

~ A user_id becomes 4 member of the ACL groups in his/her project 

profile only when logging into that project_id. Oftentimes, a 

project_id will have a corresponding ACL group. For example: 

Project = Operations ACL Group = . Operations 

- ACL group access rights are additive. If a user is a member of 

multiple groups which are specified in a single ACL, the user 
obtains the sum of the access rights for gach group. For. example: 

Project Leaders: pd 

Project Members: alury 

Any user who is a both a leader and 4 member is granted all access, 

- Note: Specifying the usr_id can increase or decrease ACL access.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Choosing a System Administrator 

- Most trusted person on the system (network). 

- Has full access to every file in every directory. 

- Must be able to understand user profile database structure, 

and execute EDIT PROFILE to manage it. 

- Responsible for registering all users in the SAD, creating 

projects, assigning PAs and defining valid ACL groups. 

- Should be available to solve any system problems/emergencies. 

- The SA is a userid. To have multiple SA’s create an id 

and give multiple people the password. 

— AREWLEDCE oF CUSteMmsre EMvincumENT



STRATEGY FOR PROFILES, ACLS, QUOTAS 

- The SAD (System Administrator’s Directory) is a database that 

defines all processes/users who LOGIN to the system 

- The purpose of user profiles is two-fold 

control access of users entering the system 

define access rights of users on the system 

- A user entering the system must specify 

the system the user wishes to run on 

the user_id s/he is to assume on that system 

any password validating the user_id (may be optional) 

a project_id affiliation (may be optional) 

- A user Tunning on the system is identified by 

a user id 

a project id 

an initial attach point in the file system 

a set of ACL groups



STRATEGY FOR PROFILES, ACLS, GUOTAS 

Choosing Project Administrators 

- Aids the SA in managing the SAD 

- Must be able to understand project structure and execute a 

subset of EDIT_PROFILE commands to manage it. 

- Can grant project nembership tO any user_id registered in 

the SAD by the SA 

- Can grant ACL group access to any member of a project s/he 

administratas. (ua HW Groug Limes SeT Gy SAD) 

- PA is often an administrative assistent, group leader, 

teacher, etc. 

- Multiple persons managing the same project can be achieved 

by creating a separate user_id, and giving out the password.



Nw 

STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing the Initial Attach Point 

- 15 the one ufd on the system the user must have some 

access to (Use minimum). 

- Setting an iap two levels below the MFD makes it easier 
to limit access (i.e. not a top-level UFD). 

- Multiple users can share the same iap, hence the same: 

login. @ and abbrevs.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Projects 

- Projects are a convenient mechanism to group together users 

who have the similar file system access. 

~ They provide an accounting entity for external login programs. 

- When a PA registers a user into a project, the following are 

specified: 

a set of project level ACL groups (optional) 

an initial attach point 

- Note, every user must be a member of at least one project 

- Project ‘Default’ is easy to administrate 

ew em 
WNOTS LIMITED To 2O-Bo Prodecrs



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Projects 

- Projects are a convenient mechanism to group together users 

who have the similar file system access. 

~ They provide an accounting entity for external login programs. 

~ When a PA registers a user into a project, the following are 

specified: 

a set of project level ACL groups (optional) 

an initial attach point 

- Note, every user must be a member of at least one project 

- Project ‘Default’ is easy to administrate 

yee ee 
ANOTS LIMITED To 20-0 Peadects



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing the Project i¢ 

- Projects are most useful for grouping users together: 

for accounting purposes 

for functional organization 

for common file system access 

- Project level ACL groups are usetul for granting access 

to certain sets of files for a certain task. 

Utilizing the Default Project 

- Allowing a user to log into a default project provides 

the convenience of not typing the project id. 

- Not specifying a project_id removes a level of security 

- Currently cannot change project_id without logout,



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Decision: To use projects or not to use projects? 

Projects: 

- Requires pre-planning for the initial organization. 

~ Allows a project_id to be ‘charged’ by the external login 

program for every user session. 

- For systems with a large user community, allows management of 

the user profile data base and file system access to be 

delegated to a set of project administrators. 

No Projects: 

~ Much easier to maintain the single default project. 

- File access can still be granted to groups of users without 

Separate project affiliations.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Users 
  

- Users are phantoms, terminal or remote processes that log 

into and use the system 

- Note: NETMAN, SYSTEM never login or have their user id 
Fue TeAusced Pacess 

Changed during login, and need not be registered. FIP needs 

SYSTEM registered (changes user_id after login). 

- When the SA registers a user, the following must be specified 

a user id 

a password (optional) 

a set of system level ACL groups (optional) 

a default login project (optional)



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing the User id 

- Certain site-dependent information can be encoded in the user_id 

such as employee number, class level, etc. 
(Has ALGeRITHh Werks Bein wih (v4 of diffeing Length 

- In a networked environment it is easier if each user has the 

Same user_id across all systems. 

~ System level ACL groups are a function of the user_id. The user 
obtains this access regardless of the project logged into. They 

are useful for granting access to system resources. 

Utilizing the Password 

- Password validates the userid, 

Yy Using NO-NULL Swicu 

- The SA can force that each user has 4 password, \a etis_tacswear 

- No one can see 4 password, only SA and user can change it.



USER PROFILES 

There are two mechanisms for controlling/monitoring a user: 

ACL Groups 

Projects 

ACL Groups 

- Mechanism to group users for file system access purposes. 

- Very general, ACL group is a set of user_ids. 

- Can be used in 3 hierarchical manner, @. 9. 

. student: alur 

._ teacher: dalurw 

department: all 

- Convenient mechanism to give a new user certain access to the 

system. Simply add that user to the ACL group.



USER PROFILES 

PROFILE: "Parameters of a user’s operating characteristics 

which create a unique environment for that user” 

Sustem Attributes 

Usenty “42 08) 
User Login Password 

Default Project Cr wone specfed at Loew) 
Maximum 16 ACL Groups 

Date/Time of Last Login 
rsa AS MAN) STATORS Darcpanse ) 

- All users must be registered in the SAD (user profile data 

base) before they can login 

- Each user id is unique. The system administrator must insure 

uniqueness between ‘friendly’ systems.+ wore Netusrn Impucation 

- The system administrator may specify that each user_id must 

have a non-null password associated with it. 

© The system administrator maintains the data base with the 

edit profile command, 

- Defaults to a CLOSED system which ensures all users must be 

Tegistered before login can occur



USER PROFILES 

Projects 

- Mechanism to group users for accounting purposes. 

- Very general, project is a set of user_ids. 

- Allows system administration task to be sub-divided. 

- Users must belong to at least one project, but may belong to many.



YSER PROFILES 

Project Attributes 

Maximum 16 ACL Groups 

Initial Attach Point 

- Project limits are set by SA. This consists of a list of 

ACL groups the PA may specify for its users. 

- PA cannot add 4 new user to the system, only to a project. 

- The project administrator maintains the project data base 

with the edit profile command. The PA need not be a member 

of the projects s/he manages



~ 

USER PROFILES 

Decision: To use projects or not to use projects? 

Projects: 

~ Requires pre-planning for the initial organization. 

- Allows a project_id to be ‘charged’ by the external login 

program for every user session 

- Project_id can be based on: 

Accounting Entity: department, branch, class 

Session Activities: administrative, programming, data entry 

- For systems with a large user community, allows management of 

the user profile data base to be delegated to a set of project 

administrators. 

No Projects: 

- Much easier to maintain the single default project 

- File access can still be granted to groups of users without 

Separate project affiliations



USER PROFILES 

Decision: How to use ACL groups? 

- Can be specified in a user’s system profile and/or project profile. 

- A user_id becomes a member of the ACL groups in his/her system 

profile during every login, regardless of the project_id. 

~ A user_id becomes a member of the ACL groups in his/her project 

profile only when logging into that project id. 

- System based ACL groups are an attribute of the user id. 

~ Project based ACL groups are an attribute of the project id.



VSER PROFILES 

NEW AND MODIFIED COMMANDS 

LOGIN Cuser_id> [passwords] [-ON “system>] [-PROJect “project_id?] 

cuser_id? “password? 

If either is missing, they are prompted for. 

. Aproject_id? 

If missing, then the default project for the user_id is used, 

otherwise it 15 prompted for. : 

LOGOUT 

- CMDNCODLOGOUT is resumed if it eyists, else CMDNCODLOGIN. 

LIST_GROUP, LG 

- List ACL groups the current user belongs to. 

SUME Pore ¢ : Bae 2OFILE ae optciey Force oF 2 4ssw> 9M Paatpr bine 

"SSTEAD OF Cosi UINT



USER PROFILES 

NEW AND MODIFIED COMMANDS 

ORIGIN, OR 

- Attach to initial attach point for project user is logged into. 

CHANGE PASSWORD, CPW “old password? 

- Change login password for my user_id. New password is requested.



USER PROFILES - GLOBAL OPTIONS 

Some global options may be selected when the SAD is 

initially created. 

Non-ACL SAD 

A SAD may be created on & non-ACL disk. 

There is little protection of a non-ACL sad. 

Only the special project ‘DEFAULT’ may be created. 

Projects 

Projects need not be created 

If no projects created then special project ‘DEFAULT’ must be. 

All users will belong to project DEFAULT 

ACL groups 

A group may be associated with a user 

Regardless of project (system-wide groups), 

Because of project (project based groups). 

Or both.



USER PROFILES - EDIT_PROFILE 

Utility used to maniplulate SAD. 

Runs in three modes: 

Initialization mode, 

System administrator mode, 

Project administrator mode. 

Many commands with many options. 

Allows ‘rebuild’ to compress/extend files.



USER PROFILES - EDIT PROFILE 

The following table lists the commands which the 

profile editor accepts, along with a list of their 

Tespective arguments and option names, Capital 

letters in the names show the abbreviations, ¢.g. "AU" 

is the abbreviation for "Add User." For more detailed 

information about each command, type "HELP <command_name>. " 

Command name 

Add Project 

Add User 

ATtach Project 

Change Project 

Argument 

project 

user 

project 

project 

Change System Administrator 

Change User 

ConVert_ACL 

Delete Project 

SA name 

user 

none 

project 

Options 

-PA, -CReate pay -SIZE 

-No_ Query, LIKE 

“LIKE, -PROJect, -PROFile, -No Query 

-SYStem, -DeFauLT 

-PassWord, -Verify_NS 

none 

“PROFile, -SIZE, -LIST 

“PA, -LIMits 

~ADD 

-PROJect -LIST 

~SYStem -PassWord 

-SYStem, -PROJect, -BOTH 

none



Delete User 

DeTach Project 

Force PassWord 

HELP 

List Project 

List System 

List User 

No Null Password 

REbuild 

Set_Project Groups 

Set_System Groups 

Verify User 
2 

user 

project 

none 

command 

project 

none 

user 

none 

none 

none 

none 

user 

< = 
Oe —VerFaun Peerseton dame 

~PROJect 

none 

-ON, ~-OFF 

none 

-PROFile, -USER, -ALL 

-OUTput, -TTY, -APPend 

“USers, -GRoups, -PROJects, ALL 

-OUTput, -TTY, -APPend 

-DETail 

-PROJect, -ALL 

-ON, -OFF 

-PROJect, -SIZE 

-ON, -OFF 

-ON, -OFF 

ALL



EDIT PROFILE 

Profile editor [rev 19.0] in initialization mode 02 Aug 82 09:39: 54. 

SAD does not exist. Create it? YES 

Do you want SYSTEM-wide groups, PROVECT-based groups, or BOTH? BOTH 

##% Creating User Validation File. Projected number of users: 64 

System administrator = "SYSTEM" 

Create project "DEFAULT"? YES 

Set system-wide attributes for user "SYSTEM" 

~ Password: ADMIN 

Groups: . ADMIN 

#%% New group added to system: ". ADMIN".



User Validation File created 02 Aug 82 09: 36: 40 

92 entries in prime area; file is 9 records long 

Master Project File created 02 Aug 82 09: 36: 40 

Master Group File created 02 Aug 82 09:36:40



\ Set limits for project "DEFAULT": 

Groups: . USERS 

##% New group added to system: "USERS". 

Set attributes for user "SYSTEM" in project "DEFAULT": 

Groups: . USERS 

44% New group added to project: ". USERS". 

Initial attach point: <STAFFOUSERS 

Set profile attributes for project "DEFAULT": 

Groups: . USERS 

Initial attach point: <STAFFOUSERS 

Project “DEFAULT” created. 

92 entries in prime area; file is 9 records long. 

Check entry? YES



eters eee e ett e ett eet ie tee t te teat tere Tete Teeter rere terete et ee 

HEE 

Project: DEFAULT Administrator: SYSTEM 

One entry in use out of 92 

Master project limits 

Groups: . USERS 

Project profile 

Groups: . USERS 

Initial attach point: <STAFFOUSERS 
HEEAEEAAA ALARA ARR RAHRRREA AEE EPAPER EEE E EERE ERE E EAE EE eee 

HAE 

Change entry? N



2 AU DOUG -PASSWORD SPORT -VERIFY_NS 

Set system-wide attributes for user "DOUG": 

Groups: . USERS 

User "DOUG" added to system 

Check entry? YES 

ISAS IIA AAAS A AEA RAR AY RRR AREA ee ae 

HEE 

System-wide attributes for user "DOUG" 

Groups: . USERS 

Default login project: DEFAULT 

Attributes for user "DOUG" in project "DEFAULT": 

Groups: “none? 

Initial attach point: <none? 

ELSE RES IAAIA TIA TATA RASA ee eee eee eee eee ee eee egy 

Hee 

Change entry? AU DALE -PASSWORD COMM 

Please answer YES or NO? NO 

> AU DALE -PASSWORD COMM 

Set system-wide attributes for user "DALE": 

Groups: . USERS



— User "DALE" added to system 

Check entry? NO 

2 AP DEVELOPMENT -PA DOUG -CREATE PA 

Set limits for project "DEVELOPMENT": 

Groups: . PROGRAM 

4#% New group added to system: ", PROGRAM" 

Set attributes for user "DOUG" in project "DEVELOPMENT": 

Groups: . PROGRAM 

44% New group added to project: ". PROGRAM” 

Initial attach point: <STAFFODEVELOPMENT 

Project "DEVELOPMENT" created 

20 entries in prime area; file is 1 record long 

Check entry? YES 

SERIA ALATA AAAI A HHA Re eee eee eee e ee eee eens ese serene aya 

HeEHH 

Project: DEVELOPMENT Administrator: DOUG 

One entry in use out of 20 

Master project limits 

Groups: . PROGRAM 

Project profile 

Groups: <none?



Initial attach point: <none> 

ISAS REAR EEE eee eee eee ae 

HEH 

Change entry? NO 

> ATP DEFAULT 

7 U5 ALL 

SRSAE RIAA AAI IS AAPA HAE Ee eee eee eee ee Eee eee eee 

HE 

System Administrator: SYSTEM 

3 entries in use out of 92. 

System-wide groups enabled 

Project-based groups enabled 

Non-DEFAULT projects exist. 

REERESERERAR RATA AAA RRA A EES 

+ # 

# Project section % 

# # 

SEREREESRREL ARS ARSS eee ees ges 

Project: DEFAULT Administrator: SYSTEM 

3 entries in use out of 92 

Master project limits 

Groups: . USERS



Project profile: 

Groups: . USERS 

Initial attach point: <STAFFOUSERS 

nk canes fo OR ek hee eS oeee ee ee ee eee nee een 

Rie 

Project: DEVELOPMENT Administrator: DOUG 

One entry in use out of 20 

Master project limits 

Groups: . PROGRAM 

Project profile 

Groups: “none? 

Initial attach point: <none» 

SEEEEEEAL ESSE SSAA ARRAS ARRAS aS 

# # 

% Group section % 

# # 

FEEEEEEEEL ESSER RASA RRS RAE ag 

Group: . ADMIN 

Group: . USERS



—< Group: . PROGRAM 

FRERERRARE ASRS AS SSSR E ESE S ELS 

# $ 

$ User section % 

¥ # 

RRREREAAERE ASSESS Reese eee 

System-wide attributes for user "DOUG" 

Groups: . USERS 

Default login project: DEFAULT 

System-wide attributes for user "SYSTEM": 

Groups: . ADMIN 

Default login project: DEFAULT 

System-wide attributes for user "DALE": 

Groups: . USERS 

Default login project: DEFAULT 
BEHEHRAEHAAHA EAE S PEARSE EERE eee eee eee eee e eee eee eee eee ey 
$etHH 

> DIP 

> FPW -ON 

> HELP 

The following table lists the commands which the



ie 

~ 

profile editor accepts, along with a list of their 

Tespective arguments and option names Capital 

letters in the names show the abbreviations, e.g. "AU" 

is the abbreviation for "Add User. " For more detailed 

information about each command, type "HELP <command_name>. " 

Command name 

Add Project 

Add_User 

Altach Project 

Change Project 

Argument 

project 

user 

project 

project 

Change System Administrator 

Change User 

ConVert_ACL 

Delete Project 

Delete User 

DeTach Project 

Force Password 

HELP 

SA name 

user 

none 

project 

user 

project 

none 

command 

Options 

-PA, -CReate pa, ~-SIZE 

-No_ Query, -LIKE 

“LIKE, -PROJect, -PROFile, -No Query 

-SYStem, -DeFauLT 

-PassWord, -Verify_NS 

none 

“PROFile, -SIZE, -LIST 

“PA, -LIMits 

~ADD 

-PROJect -LIST 

-SYStem -PassWord 

-5YStem, -PROJect, ~-BOTH 

none 

-PROJect 

none 

-ON, -OFF 

none



-PROFile, -USER, -ALL 

-OUTput, -TTY, -APPend 

-USers, -GRoups, -PROJects, -ALL 

-OUTput, -TTY, -APPend 

-DETail 

-PROJect, -ALL 

ON, -OFF 

-PROJect, -SIZE 

-ON, -OFF 

-ON, -OFF 

-ALL 

FERRER TERRE SE SS ETE EEE ETT TT TET TT SERRE ATER ASSES 

List Project project 

List System none 

List User user 

No Null PassWord = none 

REbuild hone 

Set Project Groups none 

Set System Groups none 

Verify User user 

> NNPW -ON 

> ATP DEVELOPMENT 

pee “ALL 

Hee 

System 

3 entries in use out of 92 

System-wide groups enabled 

Administrator: SYSTEM 

Project-based groups enabled. 

Non-DEFAULT projects exist. 

Null passwords not allowed 

Passwords always requested at login



FRRERPRAPS ASSES ASA A RS A ee 

# # 

5 Project section # 
# # 
FRRPRERARER SRSA eae e eee ey 

Project: DEFAULT Administrator: SYSTEM 
3 entries in use out of 92 

Master project limits 

Groups: . USERS 

Project profile: 

Groups: . USERS 

Initial attach point: <STAFFDUSERS 

SPREE SERS EEE ERE RE RR EERE RR ey oe toes 
et ; 

Project: DEVELOPMENT Administrator: DOUG 
One entry in use out of 20 

Master project limits 

Groups: . PROGRAM 

Project profile



Groups: <none> 

Initial attach point: <none> 

Group: . ADMIN 

Group: . USERS 

Group: . PROGRAM 

BERERRRRER SARE SAS SRS SRS EES SS 

# # 

$ Group section # 

$ # 

SRARRAELEAAE AS Rese ee ees eee 

RERREEERALAA SAS SHS aes e sees 

# # 

% User section # 

$ $ 

RERERIRERRASA SEAS SERS 

System-wide attributes for user "DOUG": 

Groups: . USERS 

Default login project: DEFAULT 

System-wide attributes for user "SYSTEM" 

Groups: . ADMIN



a Default login project: DEFAULT 

System-wide attributes for user "DALE": 

Groups: . USERS 

Default login project: DEFAULT 

BILATERAL SALAH A APA E PEPE HEE R REE HEE LE LE 

SEERE 

> QUIT 

se
ns
 

is
 
sa
e 

ES
,



ACCESS CONTROL LISTS 
(ACL) 

ACL GROUP _ NAMES 

PROJECT 

USER ID 

INITIAL ATTACH POINT 
(ORIGIN) 

USER REGISTRATION 

PRIMGS — REV19 

DEFINITIONS 

Provides an alternative to passwords as a 

means of controlling the use of the file 
systems. It is a list of users (or sets of 
users) along with the corresponding access 
modes associated with that user. 

FILE ACCESS MODES 

R - Read Access 
W —- Write Access 

DIRECTORY ACCESS MODES 

L —- List Access 
P — Protect Access 
D — Delete Access 
U - Use Access 
A - Add Access 

ALL - RWLPDUA 
NONE —- Deny all access 

One of more users grouped together because 

of their common access needs to the file 
system. Group names begin with a period. 

{Example: . USERS ) 

Is defined to be a group of users with 
Similiar attributes and system usage. 
Such as: Persons doing’ an accounting application 

in one project, while the group doing program 

development is in another. It is also a method 
of allowing the system administrator to delegate 

Tesponsibility of controlling the users of a 
PROJECT to the PROJECT ADMINISTRATOR. 
Note: Project names do not begin with a period. 

User Id’s are the same as the Rev. 19 
login name but they are not neccessarily . 
tied to a UFD Id. The user name can now 
be a maximum of 32 characters. 

  

Is a UFD or SUB-UFD in the file system 
to which the user is attached when 
they log in. This is a project based 
attribute. Up to 16 levels deep within the 
file system and currently restricted to local 
partitions. (no remote disks for local logins. ) 

  

A method for the system administrator 

to create a list of users with their 
personal passwords, ACL group names and 

projects. It will also provide user 

verification as part of the login protocol. 

 



PRIMOS —- REV19 

USER PROFILES Loosely defined as those system wide parameters 
of a users operating characteristics which 
create a unique environment for that user 
This includes the following information 

1. User Id —- up to 32 characters 
2. User Login Password — up to 16 characters 
3. Attributes 

a. project — may be more then one 
b. ACL groups - as many as 16 groups 
c. Initial attach point 

ACCESS CONTROL LISTS 

Access Control Lists (ACLs) are a way of protecting file system 
obyects (files and directories) from unauthorized access. They provide 
a passive (requiring no intervention by the accessing user) mechanism 
for effecting this protection, as opposed to the active mechanism 
currentiy provided by passwords. ACLs are simply lists of ordered 
pairs (<Cidentifier>:<access rights>) which determine what users and 
groups of users are accorded rights to files and directories 

When a user thinks of protecting objects under his control. there 
are three basic areas of protection which come to mind: First, the 
useT may want to protect all of his objects in a certain way without 
taking any specific action. This is known as default protection. 
Second, the user may want to protect a certain class or category of 

objects in a common way, adding new objects to the category as they are 

created and changing access of all objects in a category. We call this 
protection by access categoru. Finally, obyects may be protected 
individually according to their specific needs. This is known as 
specific protection. Together, categoric and specific protection 

provide explicit protection of objects 

The new ACL system provides the ability to use all three types of 
protection. Default protection is provided through the directory 

hierarchy; that is, the access on a directory "trickles down” to all 
files and subdirectories contained in it (unless they are explicitly 
protected themselves). Protection by access category is provided by 

*NAMED’ ACLs. These ACLs may be created and edited independently of 
the objects which they protect, and when the ACL for a category is 
changed, the access changes for all the objects in that category 
simultaneously. For purposes of clarity, in this document named ACLs 

are always referred to as "access categories." Specific protection is 
provided by ACLs which are, in effect, simply attributes of the object 

being protected. They may be manipulated only through identification 
with the object they protect.



ACCESS CONTROL LISTS 

The ACL access rights 

ACLs provide access control by associating identifiers with lists 
of access fights. The rights available and their meanings are as 

follows: 

Right Applies to Primary Meaning 

Protect Directories Accesses may be set and modified. 
Delete Directories Entries may be deleted from the directory. 

Add Directories Entries may be added to the directory. 
List. Directories The contents of the directory may be read. 

Use Directories The directory may be attached to 
Read Files The contents of the file may be read. 
Write Files The contents of the file may be changed. 
ALL Both PDALURWX 

NONE Both Explicitly deny all access. 

Identifiers 

Identifiers in ACL pairs identify either a single user, a group of 

users, of all users who do not fall into the above two categories. 
Individual users are identified by their user id. Groups of users are 

identified by group names, which always begin with a dot ("."). Groups 
are assigned by system and project administrators and set up at login 
time. Any user not listed either by name or in a group may be covered 
by the special identifier "SREST,” which is essentially a “catch-all” 
group. 

Access pairs 

Throughout this document we will be referring to "access. pairs.” 
An access pair is defined as a pair "<id>:<access>," where the <id> 

must be a legal identifier, the colon must be present, and <access> is 
a list of access rights as defined above (which may be null). 
Syntactically, we will always refer to this as an <access_pair>. We 
will also use the term <access_control_list>, which is simply a list of 

<access_pair>s separated by spaces. 

e
a



ACCESS CONTROL LISTS 

The following example is an example of a default ACL 

  

SYSTEM: ALL 
. USERS: DALRWX 
. CLASS: LUR 
JERRY: LUR 
SREST: LUR 

The MFD is normally protected by a specific ACL. The MFD is the 

only directory on the system that cannot have a parent. Once it has 

been converted to an ACL directory attempts to convert to default 

protection or to delete an access category will be rejected. In the 

above example a specific ACL was set to allow the user ‘SYSTEM’ all 

access rights, the acl group ’. USERS’ everything but protect, and all 

others list, use, and read. This is because of the special identifier 

*SREST *. As we create new directories on the MFD, these new additions 

will automatically be protected by this "SPECIFIC ACL”. Once the ACL 

is enabled the system will check the list each time the file or 

directory is OPENED for access. The file system will compare each 

entry in the ACL for a match on the "USER_ID" or an "ACL GROUP" name. 

In the above example, the "SPECIFIC ACL", which is the default acl 

of the MFD, allows the user "SYSTEM" full access to the mfd. The users 

in the ACL GROUP ". USERS" can delete, add, list. read. write, and 

execute only. The ACL GROUP ".CLASS" and the user "JERRY" can only 

list. use, and read. For the purpose of this paper "JERRY" will be a 

part of the ACL GROUP ”. USERS”. By creating the ACL with JERRY’s name 

listed explicitly, we have limited his access to only LUR. This way we 

can separate a user from an ACL GROUP for specific purposes. In TeV 

18 If a user had the owner password they had complete access to the 

directory and its files. It was nearly impossible to control just one 

user. At Rev. 19 we can now specifically eliminate one user by User 

name. In the above example the RESERVED name "SREST" is used when we 

would like to reference all users of the file system. 

ee



ACCESS CONTROL LISTS 

The next example is one level deeper in the tree and is meant to show 

that an ACL at the next deeper level could increase a user’s access 
rights. 

  

iSpecific 

  

i LEVEL1 j 

: 

$ } } 

} SPECIFIC2 ACL: + TOM : i JERRY } 

SYSTEM: ALL 
. USERS: ALL 
$REST: LR 

The above example shows an ACL that will protect all Files and 

directories subordinate to LEVEL1. The user "JERRY" will have complete 
access below this level since he is not explicitly mentioned and he is 

a part of the ACL GROUP ”. USERS” 

Each level of directories within the file system could have an 
ACL. If not otherwise set explicitly, the DEFAULT ACL at the MFD will 
cover the entire volume. With the two previous examples, the user 

"JERRY" was allowed only list and read access at the MFD level but at 
the directory LEVEL1 the new ACL increased the user “JERRY’S" access 
rights for this part of the file structure. 

If a user were to attach to the MFD the DEFAULT ACL would provide 
the protection. When that same user attached to the directory "“LEVEL1” 

the specific acl at that level would automatically become the one the 
file system used. After the SPECIFIC ACL is created it essentially 
becomes the default acl for the files and directories at this level of 

the file system



ACCESS CONTROL LISTS 

The next example is again one level deeper in the tree and shows how 

the user "JERRY" has created a "CATEGORY ACL" to protect his files and 

directories. With this ACL he has allowed the SYSTEM administrator and 

himself complete access but only allowed the rest of the users read and 

list access 

  

} Piles —3 } SPECIFICS ACLi 

SYSTEM: ALL 
JERRY: ALL 
$REST: LR 

There are 3 commands that control the Access Control Lists at rev. 

2 They are SET_ACCESS, EDIT_ACCESS, and LIST_ACCESS 

Setting access 

The SET_ACCESS command is used to specify the complete set of access 

rights for either a category or a specific object. Its syntax has the 

following forms: 

SET_ACCESS <target> 
SET_ACCESS <target> <access_control_list> 
SET_ACCESS <target> -LIKE <reference> 

SET_ACCESS <target> -CATEGORY <category_name> 

For purposes of this discussion, files and directories are considered 

to be the same. The NO_QUERY option may be used to suppress any of the 

questions indicated below. In all cases, if the <target> is a password 

   



  

directory whose parent 
to an ACL directory. 

ACCESS CONTROL LISTS 

is an ACL directory, the <target> is converted 

* When only a <target> is given 
The <target>, which must be a file, is set to use the default 
ACL for the directory. 

* When a set of access pairs is given 
The action in this case depends on whether or not the <target> 
exists, what its type is, and how it is currently protected. 

AL) Starget> is a file 
The ACL for the file is set as specified. If no specific 
ACL currently exists for the file, one is created. Note 
that if the file was category-protected the category will 
not be changed. 

bc ee Starget> is an access category 
The old contents of the category’s ACL are lost, and are 
replaced by the specified list of access pairs. 

G.y <target> does not exist 
A new access category is created with the specified list 

of access pairs. 

When the LIKE option is given 
In this case, both the <target> and <reference> must be files. If no 

specific ACL exists for the <target>, one is created. The <target>’s 
ACL is set to be identical to that of the <reference>d. Again, if the 
<target> was category-protected, the <target> is removed from the 

category and the category is not changed. 

When the CATEGORY option is given 
The <target> must be a file and the <category_name> must specify an 
existing access category. The <target> is added to the access 

category. 

Changing access 

The EDIT_ACCESS command is used to modify existing ACLs. Its 

syntax is: 

EDIT_ACCESS <target> <access_control_list> 

The <target>, which may be a specifically-protected file or an access 

category, has its ACL modified to include each of the new <id>s. If an 
its <access> is changed. A null <access> 

indicates that the <id> should be removed from the list. EDIT_ACCESS 
should not be used on 

Cid> already exists 

category-protected, but 

files which are currently default or 

if it is the user will be queried to determine 
whether or not he wishes to create a new specific ACL. Example: We 

want to add a new user to the USER "JERRY’S" category. The command 

would look like this: 

s
e
s
,
 

d
i
e
 
e
S
 
e
e
e



ACCESS CONTROL LISTS 

EDAC CATEGORY. ACL NEW. USER: ALRW 

If we wanted to change the access rights of the group "SREST”, the 

command would look like this: 

EDAC CATEGORY. ACL $REST: NONE 

To eliminate the User completely use the command: 

EDAC CATEGORY. ACL OLD. USER: 

the <NULL> access rights will remove the user from the list. 

Examining access 

The LIST_ACCESS command allows users to examine the access rights 

for any file system object. Its syntax is: 

LIST_ACCESS [<object>] 

If the <obyect> is omitted, the access rights for the current directory 

are given. If the <object> is an access category, its ACL is 
displayed. Otherwise, the ACL protecting the <object> is listed. 

  In the above example the ACL "DIR. ACL" beneath the directory 

   



ACCESS CONTROL LISTS 

"LEVEL1" could become the DEFAULT PROTECTION of this entire subtree 

with the following command: : 

SAC LEVEL1 -CATEGORY DIR. ACL 

The user "JERRY" could protect specific files using the command SAC 

like such: 

SAC SPECIFIC. FILE JERRY: RWX $REST: NONE 

The users "TOM" and "AL" could do likewise. The DEFAULT ACL is a 

global one and would be used to automatically protect any new files and 

directories that would be created on a day by day basis. If a User 

needed special protection for a specific file or files they would 

create their own ACLs to provide it. A DEFAULT acl could protect all 

entries within a directory or an individual acl could protect a single 

file or directory with specific access rights. An example might be if 

the user "JERRY" had a category acl allowing the ACL GROUP ". USERS” 

read access only but had one file that the user "AL" needed to be able 

to write. An ACL could be created to allow the user "AL" write access. 

In summary, a default acl at the mfd level could protect the 

entire volume. But in actual practice as we traverse deeper into the 

tree a users access rights could increase or decrease depending on 

their individual needs. With the implementation of access control 

lists this is now possible, just by defining new ACLs at lower levels. 

We are much more flexible about who can have access and who cannot



KEN Heyes 
INoy 

S-3-82 

Dos Tents Marek [ess 

FO 
Cc YEMO PA 

& 

(\SE@ VD yo 22 che 

Mert too furel uep 

Seecke - Aetla ane Unchaeact — Change fe ome wet Oy othe 

earecoay ACLs Gre Uwe - change sper foalt 

Wak NE potut (TAP) 

  

SxL Pysyecks Con Ace Ging decodes, 

est \_ Dera | ita 

\ eet | ei SS ——— 

——— 
ie 

lus n } 

(a 

User past oe i Sys Lisr aud preyect 

  

een Ltt, 

M1 fecflas & PA 
y 

 



 



   

ii SUBJECT: DISK QUOTAS 

  

— 

TIME : 15 MINUTES 

MATERIAL: SUPPLIED 

OBJECTIVES: 

cs 
¢ 

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL ABLE TO: 

1. DESCRIBE THE DISK QUOTA FEATURE OF PRIMOS 

2. USE THE COMMAND: SET_QUOTA 

3. USE THE COMMAND: LIST_QUOTA 

a 4. DESCRIBE THE DISK HIERARCHIES 

AA 

  



D1SK QUOTAS 

- What are disk quotas? 

- Provides administrative control over disk usage. 

= Quota limits the number of records a single directory or 

directory sub-tree can use. 

- Units are physical disk records (2kb). 

- May be specifed on a per-ufd basis. 

= Quota of zero means unlimited record usage is allowed. 

- Quota may not be set on an mfd. 

- Requires rev 19 disk format. 

Note: No temporary file allowance, nor login/out quota.



STRATEGY FOR PROFILES, ACLS, QUOTAS 

Utilizing Quotas 

- The ability to impose quotas is controlled by ACLs. 

- For a particular sub-tree or partition, quotas may be 

conserved 

overcommited 

undercommited 

unregulated 

- Conserved means that the sum of all the quotas equals 

the amount of disk space available. 

- Qvercommited means that the sum of all the quotas 

exceeds available disk space, and that a ‘disk full’ 

condition can occur. 

- Undercommited means that the sum of all the quotas 

is less than the available disk space, thus reserving 

some amount of space for future needs. Only the 

‘maximum quota exceeded’ condition can occur 

- Unregulated means that one or more UFDs have no quota.



DISK QUOTAS 

- When are quotas useful? 

- Jo meter disk record usage 

- To size directories 

- Jo administer to file system more effectively



DISK QUOTAS 

Example: 

- If the quota set on ufd_b is 700 records and the quota set on 

ufd_c is 900 records, and the parent directory ufd_a has a 

quota of 1000 records, then the total records that can be 

used by the entire sub-tree (ufd_a, utd _b and ufd_c) is 1000



NEW COMMANDS 

SET QUOTA 

USAGE: SQ <PATHNAME? -MAX <RECORDS> 

“pathname 

Name of directory to impose quota on. 

“records? 

Number of 2kb records allowed for use by this 

sub-tree. 

- Sets 4 quota on “pathnamey, 

- Must be owner or have Protect access to superior directory. 

- If records is specified aS zero, there is no quota. 

 



NEW COMMANDS 

LIST QUOTA 

USAGE: L@ C<PATHNAME?] 

~ Reports: 

Maximum quota for the directory and its 

subditectories. Total number of records 

currently used by this subtree. The number 

of records used in this directory only. 

(not including subdirectories) 

- List access is required.



DISK QUOTAS 

Example 

1000; t= 

LQ UFD_A EXAMPLE: 

Maximum records allowed = 1000 

Total records used = 480 

Records used in this directory = 290 
 



DISK QUOTAS 

1.1 When Are Quotas Useful 

Quotas are useful to limit the number of records that a directory 

may use. They may also be used to meter disk record usage and to 

size directories. 

1.2 What Are Quotas 

Quotas are limits placed on directory size. The limits are in disk 

record units. No directory with a quota is permitted to obtain 

records causing it to exceed its quota. This restriction is 

enforced on the entire subtree. If multiple quotas are in effect at 

various levels of the subtree, then the most restrictive quota is 

enforced. 

A quota is always a positive integer value. No quota {quota = 0) 

allows unlimitted usage. Negative quotas are not allowed. 

1.3 Commands 

1.3.1 List Quota C<Cpathname>] (list quota information) 

List quota information of directory <pathname>. If <Cpathname> is 

omitted, the current attach point is used. 

The abbreviation L@ may be used. a 

Qutput is of the form 

Maximum records allowed = X 
Total records used = Y¥ 
Records used in this directory = 2, 

where X is the quota max for the directory, Y is the number of 

records used in the directory tree and Z is the number of records 

used in this directory level. “ 

Quotas are enforced by never allowing Total records used to 

exceed Maximum records allowed. Also neither Total records used 

nor Records used in this directory may be less than one. 

DISK QUOTAS page gh



1.3.2 Set Quota <pathname> -max <n> (set maximum quota) 

Set the maximum quota on directory <pathname> to the value <n> 

records. A frestriction on usage is that the user of the command 

must have owner or protect access to the parent directory for 

<Cpathname> 

  

The abbreviation SQ may be used for Set_Quota and -m for —max. 

Exception condition ‘file in use’ may be Taised when setting a 

quota on a directory without a current quota. The exception will 

occur if there are active users of the directory or its subtrees 

at the time the quota change from zero is requested. Note that 

this will occur on CMDNCO when the system console is attached 

there. Also note that this only occurs when changing a quota 

from a current valve of zero to a positive value. If the 

directory already has a non-zero quota this exception will not 

occur. 

1.4 Using Quotas 

Disk record quota are an optional feature for each directory. rf 

there is a maximum quota on a directory, then the system uses the 

quota restriction. Disk usage meters are recorded regardless. 

1.4.1 Maximum Quota 
  

Maximum quota is used to restrict a user to an amount of disk 

    

storage specified by the system administrator. This ahs 

accomplished by setting the MAX quota on the user’s UFD. They 

subtree for the UFD will not be able to use more records than 

that maximum. ° 5 

The maximum quota is an arbitrary value. The sum of the MAX 

quotas on all top level UFDs can exceed that which is available 

on the logical disk. In this case, the maximum quota ¥does not 

guarantee the availability of records in the future The user 

still competes with other users for available records Sbut the 

competition is controlled. & 

Inferior directories can also have their MAX quota set. The 

setting is the same as that for top level directories. The OQuners 

of the immediately superior directory merely sets the value of; 

  

MAX quota of the target directory. The previous value; if an 2 

is changed to the new valve. The MAX quota of the current 

directory is unchanged. In this way the MAX quota is 

  

DISK QUOTAS page  



non-conserved. 

With a non-conserved system the project administrator has a 

privilege similar to that of the system administrator, namely 

that he can over-commit his allocated disk records. It should be 

noted, however, that he is not allowed to actually use more 

records than he is allocated. 

The reason for this arbitrary maximum is to allow a user extra 

records on a short time basis for listings and other temporary 

files. Most users will periodically cleanup their directories in 

order to keep far enough below their maximum to allow ease in 

working. If this assumption is correct, the administrator can 

give out more records in maximum quota than actually exist 

because users will not use their allocated maximums at the same 

time. This gives better utilization of the disk, since users are 

sharing records for temporary use. Of course, if a site finds 

that most users tend to keep close to their maximum quotas and 

the disk full condition continues to occur, it can set the 

maximum quotas so that the total is equal to the size of the 

logical disk. 

1.4.2 Quota Hierarchies 
  

A logical disk can be made to use the quota feature by first 

modifying it with the new FIX_DISK. FIX_DISK will fill in the 

records used field in UFD headers. The owner of the MFD would 

then set the MAX quota on any top level UFDs he wishes, In this ~ 

way he could restrict the number of records used by those UFDs. 

A directory only becomes a quota directory when its max quote. is 
aay 

set. ae 

  

   
‘ * 

When a file is created or extended the quota system will check 

all superior directories to insure that a MAX quota is wet 

exceeded. In the example below B and D are non-quota directories 

and are therefore not checked. Let us take the example of adding 

a record to directory D. D has no quota so its qub&ém is not 

checked. Its parent C has a quota of 100 records afd a total 

records used of 60 records leaving a difference 40 records. 40 

records minus the one we are adding is 39 which is greater than 

zero so we pass the test for directory C. Directory B has no 

quota so we go on to directory A. A has a quota of 4000 records 

and a total records used of 4000 leaving 0. Subtracting the, 

record we wish to add leaves -1 records which is negative and we © 

fail the quota test for directory A. Therefore, the necomg will 

not be allocated and a error will be returned. ** ; 4 

DISK QUOTAS page 3



      

ih
 

Max 
Dir used 
Total used 

Max 
Dir used 
Total used 

Max 
Dir used 
Total used 

Max 
Dir used 
Total used 

4000 
1500 
4000 

° 
2440 
2500 

100 
15 
60 

° 
45 
45 

  

IE
S 
en
 

me 
oe
 C
y 

Se
l e
e
e
 

oe 
oo

 
o
e
    

     



 
 

 
 



    

SUBJECT: BADSPOT HANDLING 

TIME : 15 Minutes 

MATERIAL: Supplied 

OBJECTIVES: 

UPON COMPLETION GF THIS SUBJECT THE STUDENT WILL BE ABLE TO: cag 

1. Describe the New BADSPOT handling features. 

2. Use the new BADSPOT handling feature effectively. 

3. Present the new features to customers. 

       



IMPROVED BADSPOT HANDLING 

- New badspot file format allows single record badspots, instead 

Of mapping out a whole track. Contains errors to a smaller space. 

- Allows remapping of a bad record to 4 good one. 

- COPY DISK and PHYRST do not understand file system structures. 

If a badspot is encountered they can create an ‘equivalence’ 

block to a goodspot. 

- FIX DISK understands file system structures. It examines mapped 

entries in badspot file and adjusts file system pointers to include 

mapped record. This must be done prior to adding the partition. 

- PRIMOS does not create badspot entries, nor remap badspots. 

- Available only on 19 format disks. aie e



NEW PHYSICAL DISK FORMAT 

- Access Control Lists, Disk Quotas, Badspot Handling 

Require a new physical disk format 

- Starting at 19.0 each partition contains a revision stamp 

- Paritition is converted to 19 format by FIX DISK or rev 19 MAKE. 

- Must use FIX DISK not FIXRAT on 19 format partitions. 

- FIX_DISK will fix any rey partition, and will do 4 better job 

than FIXRAT. 

- Pre-19 format disks may be run under rev 19, but must be converted 

before above features can be used 

- Pre-19 format disks can be moved freely between rey 1B and rev 19 

systems (without running FIX_DISK or a conversion utility). 

~ Rev 19 format disks will NOT run under earlier revisions: © 

- FIXRAT, tev 17 or 18 will break a rev 19 disk. : ° y 

- Rev 19 disks can be reverted to rev 18 format via a CPL pragran, : 3 

(Note, should only be done in case of emergency. ) : 

- New DOS for rev 19.0  



1 BADSPOT HANDLING 

1.1 Background 

Currently there is no viable scheme to handle badspots on disks in 

either hardware or software, other than MAKE marking out the entire 

track as unavailable. This is not a problem for any product except 
for COPY_DISK/PHYRST, specially in light of new disks with high 
error rates. A general badspot handling scheme applicable to file 
system disks is required. 

1.2 Problems With Current Badspot Handling 

1. Details of disk badspots are currently saved in the BADSPT file 
as head number, track number pairs. Therefore, even if only one 
record of a track is bad, all nine records of the track are 
considered to be bad. The loss of good records hasn’t been a 

problem yet because the disks we are currently selling contain very 

few badspots. Future disks are expected to have many more badspots 

2. Another problem would have arisen with the introduction of the 
FIX_DISK utility. If FIX_DISK detects a bad disk record, it will 
truncate the file or UFD to which the record belongs. If the other 
records in the track are good, the files and UFDs to which these 
records belong will be left intact. This is in order to minimize 
the loss of information due to one bad record. However, as the 
current BADSPT file can contain only head number and track number of 

the bad record, the whole track (all nine records) will be marked as 
bad in the BADSPT file. Because the file system does not look at 
the BADSPT file, it will be able to run using the good records in 

    

the track. Nevertheless, this is an inconsistent condition. 

COPY_DISK and PHYSAV use the BADSPT file of the source disk to avoid 

reading bad records. These tracks are not written to the target 

disk (COPY_DISK) or to magnetic tape (PHYSAV). The new partiti 
will net contain any information in the good records of the ‘be 

tracks. . Rees 

3. When COPY_DISK or PHYRST is restoring a partition, they may not 

be able to write a record due to a badspot on the new partition. © 

The record which cannot be written at its correct address ¥s> Shoste 
v 

   

«© 

BADSPOT HANDLING  



1.3 Solution 

The solution selected involves mapping new physical records in place 

of bad ones and changing all file system pointers ta this new 

record. Essentially COPY_DISK/PHYRST would create the mapping and 

FIX_DISK will change the file pointers. A new format for the BADSPT 

file is required. All this is explained in detail in the following 

sections. 

1.3.1 BADSPT file format 

1.3.1.1 Old format 

Currently, the BADSPT file is a save memory image. The file 
may be examined and modified by restoring it and referencing 

it with PSD/VPSD. BADSPT is restored into consecutive memory 
locations starting at location ‘1000 and ending at ‘1000 + 2 * 
N- 1 where N is the number of bad tracks in the partition. 
Each word pair in the BADSPT file contains the track and head 
numbers of a defective track on the disk. The BADSPT file is 
created by MAKE and is used by FIXRAT/FIX_DISK, COPY_DISK, 

PHYSAV, PHYRST and AINIT. 

1.3.1.2 New Format 
  

dcl 1 badspt_file_header, 

2 bad_blk_off fixed bin, /*® affset of the ist badspt blk #*/ 

2 MBZ fixed bin, /%* must be zero */ 
2 file_size fixed bin, /* size of the badspt filex/ 
2 reserve(5) fixed bin; 

  

dcl 1 badspt_blk_header, 

  

2 bew, 7* block control word #/ 
3 type biti4), /* type of this block (badspt blk type =" 

3 length bit(12), /* length of this block #/ p 

2 badspt_blk((badspt_blk_header. bcw. length—-1)/2) 2 

3 track fixed bin, /* track number */ bi. 

3 sector bit(8), /* sector number+i, (O means whole track. 

3 head bit(8); /* head number */ ; : 
ag 

dcl 1 eqv_blk_header, 7 
2 bew, /* block control word #/ *: # sig 

3 type bit¢4), 7* type of this block Ceqv biktype aoe 

3 length bit(12), 7* length of this block -#/ a 

Fe % 

BADSPOT HANDLING page 

 



2 eqv_blk((eqv_blk_header. bew. length-1)/2) 

3 bad_track fixed bin, /* bad track number */ 

3 bad_sector bit(8), /* bad sector numbert+i */ 
3 bad_head bit‘8), /* bad head number */ 

3 eqv_track fixed bin, /*® equivlant track number*/ 

3 eqv_sector bit‘), /* equivlant sector number+1i */ 

3 eqv_head bit(8); /* equivlant head number * 

1.3.2 PHYSAV, PHYRST, COPY DISK, and FIX DISK 

1.3.2.1 INTRODUCTION 

Previously, the way the physical copy utilities handled 

badspots on a source partition was by reading a file in the 

MFD called BADSPT which was created by MAKE if a partition was 

found to contain bad records when it was initialised. This 

BADSPT file provided information which enabled PHYSAV and 

COPY_DISK to avoid treading a track which contained a bad 

record. All records in this track were also marked ‘in-use’ 

in the DSKRAT file so that the File Management System was not 

able to access the bad record. 

The new format BADSPT file has two major enhancements over the 

previous format. 

1) Single bad records are marked, rather than whole tracks 

2) An EQUIVALENCE block has been defined, which enables 

software using the BADSPT file to indicate that it has been 

able to avoid writing to a badspot by writing the record 

elsewhere. ins 
ue 

Starting from Rev 19, each partition will have a_ Rev Stamp. 

The new BADSPT file format will be allowed only on a Rev 19 

style partition. ae 

1.3.2.2 BADSPOT HANDLING 

  
BADSPOT HANDLING page 3 a4 

   



1.3.2.2.1 Source Badspot Handling 

PHYSAV and COPY_DISK were previously only able to avoid 

reading bad tracks as marked in the BADSPT files of the 

source partitions. Therefore, these two utilities have 

been enhanced to avoid reading individual bad records as 

marked in the new format BADSPT files. 

1.3.2.2.2 Target Badspot Handling 

PHYRST and COPY_DISK previously had no notion at all of 

badspots on the target partitions. Target disk badspot 

handling has therefore been added to them. 

Badspot handling for a target disk involves more than just 

avoiding bad records on the target disk, as the record that 

would have fallen on the badspot needs to be written 

elsewhere, i.e. it needs to be mapped to an available free 

record. The only way that PHYRST and COPY_DISK can know 

whether a particular record is free is by checking the 

DSKRAT file. Therefore, for each badspot entry in the 

target BADSPT file, a free record must be found from the 

source DSKRAT file, and the entry that says to which record 

address the badspot has been mapped to must be stored in 

the BADSPT file. This is achieved by adding four-word 

entries to the EQUIVALENCE block of the BADSPT file. 

During the restore or disk copy, the programs can then 

access the EQUIVALENCE block of the target BADSPT file to 

1) map records that would have fallen on a badspot, 

2) avoid overwriting those records that have had badspots 

mapped onto them ahh 

N. B. The records that have been mapped contain exactly the _ 

same information as the original record (except for the 

CRA). on 

fo Soave SUE LX DISK 

Badspot handling for FIX_DISK involves fixing the file, ” 

pointers associated with the bad records to point to the 

remapping Tecords using the remapped information that Is” 

contained in the EQUIVALENCE block of the new format BADSPT 

ile; It also makes available the good records on the 

target disk which correspond to bad records on the source 

disk. After FIX_DISK is run, the EQUIVALENCE block of the 

new format BADSPT file will be removed. 

BADSPOT HANDLING 

 



1.3.2.3 INITIAL STATE OF PARTITIONS 

As a Tule, the format of the target partition will be dictated 

by the source partition. Also, the badspot handling feature 

will be available only for rev 19 format partitions. Because 
the target badspot handling involves using the DSKRAT file of 
the source partition to find free records, then the DSKRAT 
file must be correct. If you cannot be sure this is so, then 
FIX_DISK should be run on the source partition 

1.3.2.4 FINAL STATE OF PARTITIONS 

PHYSAV and COPY_DISK will leave source partitions exactly as 

they were. 

PHYRST and COPY_DISK will only leave target partitions as 
exact copies of the original source partitions if the command 
line option -NOBADS is used, or if the source partition was a 

pre revl9 partition 

Otherwise: 

1) If the target disk originally had a BADSPT file then 
afterwards it will contain that BADSPT file with the appended 
EQUIVALENCE block. Records will have been Temapped as 
indicated by the EQUIVALENCE block 

2) If the target disk did not originally have a BADSPT file 
then afterwards it will still not contain a BADSPT file. 

The exception to these rules is if badspot handling has been 

turned off by the program - for example if no free records 
were available on the partition for bad records to be mapped 
onto. In this case there will be no BADSPT file left on the 
target disk. : 

    

args 
"e 

1.3.2.5 Compatibility + 

COPY_DISK, PHYSAV/RST will handle pre rev 19 partitions 
exactly as before. In other words, the target partition will 

  

be an exact copy of the source partition, and) no badspot_ 

handling will be provided. 
In this case, the message 

  

WARNING - SOURCE PARTITION IS PRE REV 19 
NO BADSPOT HANDLING WILL OCCUR ON PARTITION pdev 

will be issued. 

BADSPOT HANDLING 

 



1.3.2.6 USER INTERFACE 

If badspot handling has taken place during PHYRST or 

COPY_DISK, then for each affected partition the message 

BADSPOTS HANDLED ON PARTITION pdev 

will be put to the terminal at the end. FIX_DISK must be fun 

on that partition before it is used for any reason other than 

as a target disk for PHYRST or COPY_DISK 

If the situation occurs where PHYRST or cOPY_DISK are 

attempting to map a record round a badspot and there are no 

free records available, the message 

NO FREE RECORDS AVAILABLE ON PARTITION pdev 

OK TO WRITE TO IT WITHOUT BADSPOT HANDLING (YES/NO)? 

will be issued to the terminal. If the user types YES then 

the partition will be copied to without badspot handling, 

otherwise the program will exit, to allow the user to copy to 

a different partition with fewer badspots. 

Upon finding a BADSPT file (on source or target partitions) 

which is in some way inconsistent, the message 

BAD BADSPT FILE ON PARTITION pdev —- IGNORED 

is issued. 
If the BADSPT file of a source partition contains an 

EQUIVALENCE block, then the program will abort with the error 

message: 

BADSPT FILE ON PARTITION pdev HAS AN EQUIVALENCE BLOCK 

PLEASE RUN FIX_DISK 

  

N.B. A BADSPT file not marked as special in the 

completely ignored. 

BADSPOT HANDLING    



 
 



  

bind! SUBJECT: FIX_DISK Command 

TIME : 20 Minutes 

MATERIAL: Supplied 

OBJECTIVES:    

  

   

    

   

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO: 

1. Describe the FIX_DISK command and its purpose 

2. Use the FIX_DISK command to convert a rev. 18 disk to 

rev. 19 format. 

3. Present the new command features to customers. 

 



  

- Fix Disk replaces fixrat for rey 19 format disks. 

~ Fix Disk provides all fixrat features plus 

Checks acl integrity 

Checks disk quota integrity 

Supports new badspot mechanism 

REV (7 
Fisrat must NOT be run on a rev 19 format disk. 

s 

- Fix Disk will not run under Primos I]. This may require a change 

in backup procedures for sites that are currently doing backups 

under Primos Il, and they include running fixrat (recommended). 

oi
e 

“l
ag

e 

 



  

FIX DISK -DISK “physical _devicey “control arguments? 

Control Arguments 

=ElX 

-ufd CoMPRession 

-COMmand DEVice 

-No_ Quota 

~CONVERT_19 

“LEVEL “number? 

Pile 

-MAX nested level <numbery 

“Auto Truncation 

~INTeractive 

-DUFE 

Fixes inconsistencies 

compresses ufd’s (must have -fix) 

allows comdey to fixed from system 

console; other users are logged out 

turn off quota checking 

convert to 19 format 

directory level for print output 

print all file names 

maximum depth allowed for nesting 

truncate nesting greater than MAX 

allows reconstruction of bad RAT 

delete unknown file entries



  

FILE SYSTEM INCONSISTENCIES REPAIRED: 

(without deleting or truncating) 

- Bad backward pointer in record header. 

If the record really belongs to the file the pointer will be 

fixed, else the file will be trucated at that point. 

- Bad forward or backward pointers in the data level of a DAM file. 

These can generally be fixed if the index pointers are okay. 

- Bad recotd address in index level of a DAM file. 

These can generally be fixed if the data pointers are okay, 

- DAM index is too short. 

The index will be extended if there is space in the index record. | 
—s, 

If not, the file will be truncated. 

- DAM index 1s too long. 

The index should be truncated leaving the file intact. ~~ 

 



  

- The index level in a record is wrong. 

The correct value should be set. 

- The special bit is not set for DSKRAT or BOOT. 

The bit will be forced on. 

- The BRA in the header of a record is wrong. 

Tt will be set to the right value. 

- The CRA in the header of a record 15 wrong. 

It will be set to the right value. 

- The word count in the header of a record is wrong. 

It will be set to the right value. 

- The UFD header in a directory has the wrong length. 

The entry control word will have the correct length set. ‘ 

  

- Quota information that is wrong will be set to the correct = 

value, Ha od 

 



1 Overview of FIX DISK 
  

FIX_DISK reads every physical record in every file, UFD, and segment 
directory, and checks that the information in each record header is 

consistent with the UFD that contains the record. If the current UFD 
is a Quota UFD, FIX_DISK also checks the consistency of its quota 

information. If any inconsistency exists, an error message is 

generated. 

FIX_DISK builds its own record availability table (RAT) while it is 

traversing the existing file structure and compares its RAT with the 

DSKRAT file. If discrepancies are found, an error message is 

generated. 

If requested, FIX_DISK will attempt to repair mismatched pointers, 

correct quota information, truncate/delete defective files, and replace 
the defective DSKRAT file. The disk will then be in a consistent 

state 

If requested, FIX_DISK will convert a pre-rev 19 partition into a rev 
19 partition. It involves initializing the quota information, changing 
the BADSPT file to the new format, and creating a rev stamp. If the 
current partition is a rev 19 partition and a equivlence section exisit 
in the BADSPT file, FIX_DISK will map the bad records into their 
equivlence records and fixes the file system pointers to point to the 
equivlence records. When FIX_DISK has completely traversing the file 
system structure, the equivlence section of the BADSPT file will be 
deleted from the BADSPT file. If a badspot is encountered in a rev 19 
partition, it will be added to the BADSPT file. If the BADSPT file 

does not exist, one will be created. 

FIX_DISK determines whether a UFD is a quota UFD by examing the maximum 
quota word in the UFD header. If it is not zero, it is a quota’ UFD 

If the MFD of a partition is a quota UFD, that partition is a quota 

partition. Otherwise it is not a quota partition and quota information 

fields are ignored. When FIX_DISK has finished traversing all the 

subtrees of a quota UFD, the quota information is checked against the 

records used determined by FIX_DISK. If any inconsistency exists, an | 
error message is generated. If requested, the incorrect quota 

information is fixed unless the quota used is greater than the maximum 

quota. Because FIX_DISK cannot and should not decide which records to 
release to correct the problem, it just marks the quota system as in an ~ 

inconsistent state. Since the records used of this quota UFD has 

exceeded its quota, it cannot draw any addition records. The user must 

delete records or increase the directory’s quota to resolve this 

conflict. FIX_DISK determines whether a UFD is an ACL UFD by the file 

type field for the UFD in the UFD entry of it’s parent. FIX_DISK will 
verify that for an ACL UFD file entries point to valid ACLs “orn Access 

Categories or default, Access Categories point to valid ACLs, amd ACLs 

point back to the same object that points to them. If there is ane 

error and fixing has been frequested, for file entries with bad AC 

pointers, it will set the ACL pointer of the file entries to the 

default valve. Access Categories or ACLs with errors will be deleted. 

          

   

 



FIX_DISK should be run on a regular schedule or whenever there is 
reason to expect that the file structure or the quota system is 

damaged. ‘i 

i.1 Useqe: 

FIX_DISK -DISK <physical disk> Ccontrol arguments]J 

Cphysical disk> is the the physical disk number on which FIX_DISK is 
to be run. The disk MUST be assigned first, unless the -comdev 

option is being used. 

The control arguments are optional. They may be selected in any 

order from the list below. If no control argument is selected, 
FIX_DISK only generates error messages if errors are detected. 

Eas 

Besides printing file structure error messages, FIX_DISK 
corrects quota information, truncates or deletes defective 
files, generates a corrected DSKRAT if the current one is bad 
and maps the badspot records to the BADSPT file if -fix is 
specified. If omitted, FIX_DISK will not perform any disk 

modifications 

-ufd_compression {-cmpr} 

If specified along with -fix, FIX_DISK compresses UFDs, 
eliminates entries flagged as being deleted files” or 

directories. 

-command_device {-comdev} 

If specified, the disk being fixed is the command disk and 
FIX_DISK must be invoked via ‘the system console. FIX_DISK will” 
be the only user in the system. If there is any other users, 

they will be logged out automatically. 

  

—no_quota {-nq} 

If specified, it assumes that the partition is not a quota » 

partition and the quota checking mechanism in FIX_DISK will be 

  

turned off. sy ¢ Nas 

-convert_19? wat 

If specified, the current partition will be converted %inte al® 

rev 19 style disk. If a BADSPT file has already existed, it 

will be converted into the new format. All quota “information ~— 

is initialized, and all warning/error message related to quota 

will not be printed. A rev stamp will be created. This option 

must be used with -fix option. th    
   



—leve 

“$ite 

—max 

-auto_’ 

-inte 

-dufe (delete unknown file entry) ¢ 

1° End 

If specified, the decimal number n that follows is the lowest 

level in the tree structure in which directory names are to be 
printed. If omitted, FIX_DISK will print up to level 2 

directories (MFD and all directories in MFD file). 

If specified, the file names in all directories are printed. 

_nested_level {-max} 

If specified, the decimal number that follows is the maximum 
depth that directories are allowed to be nested. If omitted 
the maximum depth is set to 100. (see —-auto_truncation) 

truncation {-at} 

If specified, FIX_DISK automatically truncates directories that 
are nested too deeply in a directory tree. If omitted, 

FIX_DISK will abort if the maximum depth is reached. 

ractive {-int} 

If specified, and the current DSKRAT is bad or missing, 
questions will be asked so that FIX_DISK can reconstruct a 
consistent DSKRAT. If omitted and the current DSKRAT is bad or 

missing, FIX_DISK will abort. . 

The motivation of implementating this feature is to allow users 
to replace a bad or missing RAT. FIX_DISK computes the number 
of records in the partition from the disk number. In case of 
ambiquity, FIX_DISK asks resolving questions, answerable 

either YES or NO. 

If specified, all unknown file entries are eliminated. 

omitted, all unknown file entries are left untouched, no 
compressions are performed on the UFDs in which the unknown 
file entries reside and the DSKRAT will not be altered except 

in the case of the DSKRAT indicates a particular record is Ce 

but that record is actually in use. 

  

* 

The motivation of implementing this feature is to sy 

accidental deletion of valid file entries by running the wrong 

version of FIX_DISK. (e.g. an older version that does not — 

recognize the new file types has to be run.) However there is 

a drawback of not deleting unknown file entries. The File 

System advances to the next file entry by using the length 

Pield of the current file entry. If the current file entry.is 

garbage, the File System may bypass good file entries by using 

its length field. 

   



1.2 Description of Error Messages 

The backward pointer is bad. It should be YY instead of XX 

The backward pointer of a record does not point back to the 

previous record of the file. In the case of the first record of 
a file, its back. pointer is not zero. I? =—fix option is 
specified, the back pointer is fixed to point to the previous 

record if the BRA word of this record matches the first record 
address of this file. The file is truncated if the BRA word of 
this record does not match the first record address of the file. 

The Beginning Record Address (BRA) pointer is bad. It should be 
YY_instead of XX 

The beginning record address word of the records within the file 
except the first record should point to the first record of the 

Fite: If -fix option is specified, the BRA pointer is fixed. 

Sustem file is bad, ignored 

An error, which would normally cause deletion of a file, has been 
found in one of the special files BOOT, MFD, or DSKRAT in the 
MFD. FIX_DISK aborts. ; 

The current record sddress (CRA) is bad. It should be YY is XX 

The current record address word of this record does not match the 
current address. This message may be preceded by ten disk error 
messages because this problem could indicate a disk drive 
problem. If -fix option is specified, the file is truncated. 

UFD nesting exceeds maximum specified 

  

Directories may be nested to a depth of N levels. (default N 
100) FIX_DISK cannot follow the directory tree because the user 
has nested directories to more than N levels. FIX_DISK ignores 
this directory unless -at option is specified in which case 

directories that are nested too deeply in the directory tree will 

be truncated. 

  

     

  
The record header of DSKRAT file is bad 3 

The number of heads is different. It should be YY is XX 
The phusical record size is different. It should be -YY is XX 

The DSKRAT header has wrong lenath. It should be YY is XX



The information contained in the DSKRAT header does not 

correspond to the information computed from the disk number. 
Either the disk number is incorrect or the DSKRAT header contains 
incorrect information. If -int option is omitted, FIX_DISK 

aborts. Otherwise FIX_DISK asks 

FIX DSKRAT? 

A NO response causes FIX_DISK to abort. 

The file structure of DSKRAT is bad 

This message is obtained if the DSKRAT file contains any bad 
record pointers, or contains inconsistent information. If either 

int or -fix is omitted, FIX_DISK aborts. Otherwise FIX_DISK 
attempts to reconstruct the DSKRAT file. FIX_DISK computes the 
number of records in the partition from the disk number. In case 
of ambiquity, FIX_DISK asks resolving questions, answerable by 
YES or NO. such as: 40 MB storage module? 

  

FIX_DISK then asks 

Split partition? “ 

If part of the disk is to be used for paging then answer YES 
otherwise answer NO. If the answer is YES, FIX_DISK then asks 

Paging records (decimal)? 

The user should type in the number of records to be used for 

paging. 

FIX_DISK then prints the disk number, file records,» and paging — 

records. 
   

      
   

Partition XX File-records XX Paging-records XX 

and asks: 

Parameters OK? 

If the numbers are incorrect, amswer NO and FIX_DISK will attempt ¢ 

to recompute the numbers again. k 

The father pointer is bad. It should be YY is XX 

The father record address word of the first record of a file do 

not point to the beginning record address of the file in which 

this file is entered (its father). If -fix option is specified, — 

the father pointer is fixed to point to the BRA of its father



The forward pointer of the top level index record 

of a DAM file is not zero The top level index must only be one 

record long, therefore the forward pointer of this record must be 

zero. 

The index level of this DAM file is incorrect. It should be YY 
instead of XX 

The index level word of this record is incorrect. It should be 
zero for SAM files ofr one less than the previous level for DAM 
Files: If -fix option is specified, the index level word is 
Fixed. 

The DAM index is too long to represent the DAM file 

The data records of a DAM file are shorter than its index 
indicates. If -fix option is specified, the index is truncated. 

The index of this DAM file is too short to represent the data 

records 

The data records of a DAM file is longer than its “andex 
indicates. If -fix option is specified, the index is fixed. 

The tree used count is bad. It _ should be YY instead of XX ° 

The tree used word of this quota UFD does not match the quota 
used that is calculated by FIX_DISK. If. “fix option is # 

specified, the tree used is fixed 

to 

The directory used count is bad. It should be YY instead of XX | 

The directory used count word for this directory (all the files 
and nonquota UFDs belong to this directory and the directory file 
itself) does mot match the directory used Count that is 
calculated by FIX_DISK. If -fix option is specified 
directory used count is fixed. 

   

   
    

    
    

The next index does not match the forward pointer of the 

data record ws 
4 

  

The pointers of the index section and the data section do ne 

agree. If -fix option is specified, the following actions wi 
be taken. The back pointer of the record that is pointed to by 
the DAM index and the back pointer of the record that is pointed.” 

by the forward pointe of the current data record are examined. 

The record with the back pointer points to the previous datz



record will be chosen. If neither back pointer points to the 

previous record or both back pointer point to the previous 

record, the file is truncated. 

Inconsistent entru. Record = XX, Word = YY 

Information in a file entry in a UFD is not self-consistent and 

cannot be reconciled. If -fix option is specified, the entry of 

this file is changed to vacant 

Disk read/write error. Record = XX Track = YY Head = ZZ 

An error occured while reading/writing record XX. If -fix option 

is specified, the file is truncated and this badspot record is 

added to the BADSPT file. 
é 

EDF occurs in the middle of an entry 

A directory ends in the middle of the last UFD entry. LP rete 
option is specified, the entry will be deleted. 

The Quota sustem mau be incorrect 

This message is issued if the partition was changed under DOS. 

Since DOS doesn’t support quotas, there may be directories on 
this partition with incorrect quota information. 

Partition not shutdown correctilu during the previous session 

This message is issued if the partition was not shutdown with the 

SHUTDOWN command under Primos. If the system crashed or the disk 

drive was spun down instead, this message will result. & 3 ae 

The word count of record XX is bad 4 t 3ey 

The data word count of a record is not reasonable. For every 

record except the last record, the data word count should” equa 

the record data size. The data word count of the last record 

should be between zero and the record data size. If -fix option 

is specified, the word count is set to record data size. 

    

  

    

Phusical Device number {-DISK} is missing 

The physical device number is not specified in the command line.



Bad phusical device number 

The physical device number that is specified in the command line 
is bad. 

2 files point to the same record 

Two or more files on this partition use the same record. it 
—fix, the second or later file to reference the record will be 
deleted. 

The Directory/Seaqdir is longer than 44K! 

The maximum size of a UFD/SEGDIR is 64K words. If one exceeds 
this limit, it will be truncated if -fix is specified. 

The BADSPT file is bad, iqnored 

The BADSPT file that is found by FIXDISK is bad, this file will 
be treated just like an ordinary file instead of a special BADSPT 
file. 

File entry at word XX does not reference an ACL oF Access 
Category 

The ACL pointer of a file entry doesn’t point to a valid ACL. or 
Access Category. If -fix, it is changed to the default value. 

Access Category at word XX does not reference an ACL 

The ACL pointer of an Access Category doesn’t point toa valid 
ACL. If -fix, it is deleted. + 

    

    

   

Access category at word XX is not pointed at by ACL it points 

The ACL pointer of an Access Category points to an ACL ee 
doesn’t point back to it. If -fix, it De deleted. a 

: Gees 

File entry at word XX is not pointed at by ACL it ooints a 

  

The ACL pointer of a file entry points to an ACL ai 

point back to it. if? =Fi45 it is set to the default value



ACL. at word XX does not point to a file entry or Access Category | 

The owner pointer of an ACL doesn’t point to a file entry or 

Access Category. If -fix, the ACL is deleted. 

A at word XX is not pointed at by object it points to 

The owner pointer of an ACL points to an object which doesn’t 

point back to it. If -fix» it is deleted. 

    

    

Cannot allocate seament for XX 

Fix_disk tried to dynamically allocate a segment for 

failed. Fix_disk will abort.



 



  

SUBJECT: BOOTSTRAP PROCEDURES 

  

TIME ; _ 15 MINUTES 

MATERIAL: SUPPLIED ee 

OBJECTIVES: # 

UPON COMPLETION OF THIS SUBJECT THE STUDENT WILL BE ABLE TO: 

1. USE THE NEW BOOTSTRAP PROCEDURE TO INVOKE PRIMOS 

2. DESCRIBE THE DIFFERENT OPTIONS OF THE BOOTSTRAP FEATURE 

a. SWITCH 4. 

  

b. SWITCH 5. 

i, 

  



NEW BOOTSTRAP PROCEDURE 

- A MORE AUTOMATED BOOT PROCEDURE 

- USES SWITCH SETTINGS 4 AND 5 

- NEW COMMAND INSTALLED iN CMDNCO: PRIMOS 

- SWITCH 4 ON AND 9 OFF 

Do not prompt for ‘Physical devices’ 

‘EXAMPLE: 
CP> SYSCLR 

CP> BOOT 10114 

Ok: : Now at PRIMOS I] ‘ 
*PRAGS , PRRUN ier on 

- SWITCH 4 AND 5 BOTH ON ee 
Fully automatic Se 

Primos is brought up to the SET_DATE sonar 

EXAMPLE 2 

CP> SYSCLR 
cP> BOOT 14114 
Ok? 

     



©.1 BOOTSTRAP PROCEDURE 

At REV 19, Primos may be coldstarted using a procedure that takes 

the system from depressing the start switch to Primos in one step. 

This procedure uses additional front panel switch settings (switches 

4 and 5) and a new command in CMDNCO (PRIMOS). 

0.1.1 Introduction 

At REV 18, three software systems are used during coldstart. 

They are Boot, Primos II and Primos. At REV 19 a fourth system 

has been introduced, the PRIMOS command. It is installed in 

CMDNCO and is instrumental in simplifying the coldstart 

procedure. Subsequent sections of this document specify in 

detail the software required and procedures to be followed to 

perform a simplified coldstart at REV 19. 

0.1.2 Software Required 

Ee Boot — must be from a REV 19 Master Disk or created by a REV 

19 MAKE. 

2 Primos II - must be REV 19 dated 11/18/80 or later. Must be 

installed in DOS>#DOSé64. 

3 PRIMOS command installed in CMDNCO. 

4 Primos Trunfiles installed in a directory on the partition to 

be coldstarted. 

0.1.3 Use of Front Panel Switches 4 and 5 

    

     

   
   

   

   

EN 

. Switch 4 down, switch 5 down. No change from REV. 18 » 

procedure. : ug 

2 Switch 4 up, switch 5 down. Do not prompt one 

*Physical Device =’. 

2.1 Front panel switches are interrogated by software | ani 

device is automatically started up. “For = exam 

coldstarting from physical device 60, switeh setting i 

will startup disk 460, 1060, etc. e.g. you cannot st 

disk 20060 this way. Switch setting 10134 wills 

disk 660, 1260, etc. Note this may be used only wi 

top ¢(head 0) partition on a disk. 2 

  

2.2 When the system prompts ‘OK: ’, it is running Primos a 

this point the PRIMOS command is used to bring up Primos 

The command is issued as PRIMOS <pathname>, where <path 

   



is the pathname of the directory containing the run files 

for Primos. The Primos command remembers the pathname so 

the next time typing just PRIMOS is sufficient. Initially 

the pathname defaults to PRIRUN. 

3 Switch 4 up», Switch 5 up. Fully automatic. 

Physical device is automatically started up from front panel 

switch setting as above. “i 

Primos is then automatically brought up from the pathname 

saved in the PRIMOS command. 

0.1.4 Example of Coldstart using Device 460 

Assume Primos runfiles are in a directory called OPSYS. 

  

o Power on. 
o Turn rotary selector to Stop/Step 

o Master clear. 

o Turn Address/Data switch to Address. 4 

o Set ’10114 in the sense switches : 

(switches 4, 10, 13, 14 up). 

o Turn selector to load. Fe 

o Press Start. A ; 

o Turn selector to Run. : ge 

o Type PRIMOS OPSYS on the system console. = ers 
% ¥ 

= wt 

  

To reboot the system: 

    

  

   

o Turn rotary selector to Stop/Step i. 

o Master Clear 

o Turn Address/Data switch to Address. 

o Set ’14114 in the sense switches 

(switches 4, 5, 10, 13, 14 up). 

o Turn selector to Load. 

o Press Start. 
oe Turn selector to Run.



 
 

 



  

SUBJECT: FUTIL REPLACEMENT COMMANDS 

  

    

       
       

ies 

; TIME : 20 minutes 

‘MATERIAL: Supplied 

OBJECTIVES: 

UPON COMPLETION GF THIS SUBJECT THE STUDENT WILL BE ABLE TO: 

1. Effectively use the FUTIL replacement commands to copy and 

delete files, directories, and segmented directories from 

the file system... 

2. Present the new features to prospective customers 

3. Describe the new commands 

a. COPY x b. DEEETE 

c. List_directory d. RWLOCK 

7 
e. PROTECT 

Ne 

Waa ne = =



NEW FILE UTILITY COMMANDS - COPY 

COPY <source pathname? [<target pathname>] [<control_args?] 

(source pathname? 

A standard treename 

<target pathname 

A standard treename. If omitted, directory is current; 

Filename is from “source pathnames. 

“control args> 

“Query, -No_Query  (distinguiah fron Veciey , No_Weruey’) 
-LeVel “decimal number? 

-RePorT 

* -DeLete 

DAM, -SAM 

-FORCE 

-INCremental 
< Rat apat) 

“REPLACE (only cogs Thue alr 

 



NEW FILE UTILITY COMMANDS - MOTIVATION 

- To provide an easier to use set of file utility commands. 

=o realize increased user productivity. & 

- To provide support for new features such as acls and quotas. 

- Implemented to replace futil functions, and support new features. 

~ Futil and Listf continue to work, but not with acls or quotas. 

- Implemented as EPFs. 

 



NEW FILE UTILITY COMMANDS - COPY 

Ccontrol_args> for attribute copying 

-DIM Preserve original date/time 

-PROtect Preserve acl protection 

-QUOTA Copy maximum quota 

-RWLock Preserve Ttwlock setting 

Copy All Preserve all of the above 

“DIM, -PRO, -QUOTA, -RWL 

- Cannot use COPY on MFD, BOOT or DSKRAT 

~  - USage under password directories requires owner access to 

“target _pathnamer, If attributes are to be copied they are 

protection keys and passwords (directories only). Quner 

access to “source pathname? is required if -DL is specified, 

of if a password protected directory is copied. 

  ne



= NEW FILE UTILITY COMMANDS 

COPY 

Copy files/directories 

- DELETE 

Delete files/directories 

= 1) ‘ j 

List directory contents 

- RWLOCK 

Set read-write lock for a file/segment directory 

be - PROTECT ory Loe oft [pattie Parawrone Kaye chins ode. val 
, Set protection for owner/non-owner on Files/directories: ~ 

 



NEW FILE UTILITY COMMANDS - DELETE 

DELETE <target_pathname? [<control_args7] 

Ccontrol args> : 

Query, — -No_Query 
-FORCE 

-RePorT 

- DELETE will not delete MFD, BOOT, DSKRAT. 

- Wildcard expansion is controlled by command processor, will te 

query unless -no_ verify is specified. 

 



NEW FILE UTILITY COMMANDS - LD 

LD [<target_object> [4wild cards>...]] [<control_args>] 

Ctarget_ob ject> 

Specifies directory pathname, plus first wildcard name. 

wild cards> 

Additional wild cards. 

“control args? 

-No_SORT, ~SORT_Dtm, ~SORT_Name 

“ReVerse 

Single COLumn 

-CATegory Protected [<category namey] 

-DeFaulT Protected, “SPECific Protected 

~DETail 

-PROtect, -DTM, =SI7E 

 



NEW FILE UTILITY COMMANDS - RWLOCK 

RHLOCK <target pathname> “lock? -RePorT 

<lock> 

Specifies concurrency lock to be set: 

SYS Use system read/write lock (default) 

EXCL N readers OR 1 writer 

UPDT N readers AND 1 writer 

NONE N readers AND N writers 

- Only applies to files and segment directories. 

- Note: not compatible with SRWLOC. 

 



NEW FILE UTILITY COMMANDS - PROTECT 

PROTECT <target_pathname? <owner_access> <non-owner access> -RePort 

Cowner_access?, “non-owner access? 

NIL { 

R ; S | 
W gf 

: | | 
Ru 

RD : 
WD 
RWD 

~ Only useful on password directories, or acl directories that. # 
are converted back. | oe 

  

    
- Replaces the current PROTEC command. Note: not conpati



a NEW FILE UTILITY COMMANDS  EPFs 

~ All the new futil replacement commands are implemented as EPF’s 

(Executable Program Format). 

- EPF’s are built with a new loader called BIND, which produces 

a new type of run file (suffix is .RUN) which may be resumed. 

~ EPF’s do not contain absolute addresses, They are recursive and 

can be shared or relocated easily. 

~ Execution takes place in segments 4360...4377 of each user’s address 

space. Maximum value for NUSEG is now 357 

Mee RLS releases the current static mode program. EPF’s must be 

Teleased separately. Breaking an EPF causes the file to remain 

open until it is RL5’d. Beware of segment consumption. 

- For internal use only. Beta test begins(at rev 19, i Full release 

is not commited at this time. e Sa 

   



FILE SYSTEM UTILITY COMMANDS 
  

1.1 INTRODUCTION 

The following sections are intended to provide a complete 
description of the file system utility commands. The commands are 
designed to perform the following basic functions: 

o File, segment directory, directory, and access category copying. 

o File, segment directory, directory, and access category deletion. 

o Setting the read/write lock for files and segment directories. . 

o Displaying the contents of a directory. 

  

o Setting the protection keys for files and segment directories. 

These commands are intended to replace, but are not compatible with, 
the current FUTIL subsystem. See the section, New Command Processor 
Features, for information about applying these commands to multiple 
files or directories in a simple manner. 

Document conventions 
  

      o Lower case text enclosed in angle brackets ("<" and = % 2 
represents an object whose actual value should be substi ay. 

upper case text indicates a literal value. For example, "< a>" 
means substitute a calendar date and "ALL" would mean use the F 
literal value "ALL”. ig 

os i 

o Text enclosed in square brackets ("[" and "3") represents ‘optio: 1 
objects. Two or more objects separated by spaces repr { 
optional choices, two or more objects separated by vertical he 3 
"]", represent a choice of mutually exclusive options, 

    

o objects followed by "..." represent multiple occurrences o 
obyects. Z 

  FILE SYSTEM UTILITY COMMANDS



1, 2— CORY: 
  

COPY will copy files, directories, segment directories, and access 
categories. 

Usage: COPY <source_object> [<target_object>] Ccontrol_arguments...1] 

source object 

A standard treename specifying the location and name of the object 
to be copied. Read (R) access is required on this object. 

target object 

A standard treename specifying the destination and name of the 
target object. If the target_objyect is omitted, the target 
directory is assumed to be the current directory, and the source 
object name is used for the target name. Append (A) access is 
required on the directory containing the target object. Delete (D) 
access is required on the directory containing the target object if 
the target object already exists 

1.2.1 control arguments 

Zero or more control arguments specified in any order from the 
the following list 

-QUERY, -@ e i 

Specifies that COPY is to request that the user resolve 
unexpected or potentially dangerous situations. This is the 
default mode of operation. 

      

  
-NO_QUERY, -N@ 

  

Specifies that COPY is NOT to request the user’s permiss on. 
but to attempt to fresolve those situations in the most). 
intuitive fashion. Ns ‘ . 

“LEVELS, -LV [<dec>] 

Specifies that COPY is only to copy down to the 
specified by “dec” when copying a directory tree. "dec” i 
decimal integer from 0 to 999. If "-LEVELS" is omitted, 
default is to copy the entire tree; if "dec” is omitted, 
default is O (only copy the top level, the directory 
itself and none of its subentries). 

-REPORT, -RPT 

Specifies that COPY is to report the results 

FILE SYSTEM UTILITY COMMANDS



successful copy operation 

DELETE: ~DL 

Specifies that COPY is to delete the. source object once it has been copied. The default is no deletion. This option Tequires delete (D) access on the source directory. 

—-DAM 

Specifies that all SAM files copied are to be converted to DAM files. The default is to preserve the original file type. 

—SAM 
, 

Specifies that a11 DAM files copied are to be converted to SAM files. The default is to preserve the original file type. 

FORCE 

Specifies that COPY is to force delete rights for all delete-protected objects selected to be deleted. This includes both a target object that already exists and the source object if "-DELETE” is selected. This argument is most useful when overwriting a directory tree that may contain delete protected objects. This option requires protect {P) access on the appropriate directory. . 

The default is to Tequest the user’s permission to Force delete an object, unless "-NO_QUERY" was specified, in) which case the protected object(s) will NOT be deleted. 
a 

-INCREMENTAL, -INC 
. 

Specifies that COPY is only to copy those objects whose dump r bit ig off (= 0). Cio: those files that have NOT been ” dumped to tape.) The default is to copy objects regardless of the dump bit setting. \ a 

   This argument is intended to provide functionality similar — to that provided by the MAGSAV INCREMENTAL command. « 
a 

Note that if a directory is the object of the command entries within that directory are copied, Tegardless o 
dump bit setting.      

  

REPLACE 

Specifies that COPY is to only copy those objects which’ in the target directory. a 

FILE SYSTEM UTILITY COMMANDS  



1.2.2 Attribute copying arquments 

The following arguments specify which attributes of selected 
objyects are to be preserved or reset by COPY. If none are 
specified, the default is to use the system default. If one or 
more are specified, only those attributes are preserved, the rest 

will be reset to the system default. 

The use of anu of these arguments requires protect (P) access on 

the appropriate directory. 

—-DTM 

Specifies that COPY is to preserve the date/time modified 
stamp of all source objects copied. The system default is to 
reset the date/time modified to the current date/time. 

When a directory is copied, the use of this argument will 
cause the date/time modified stamp of each subentry in the 
directory to be preserved. : 

-PROTECT, -PRO 

Specifies that COPY is to preserve the protection attributes 
of all source objects copied. This is done by protecting the 
target object with a specific access control list. The 
default is to vse the defavlt access in the target directory. 

-QUOTA 

Specifies that when a directory is copied the maximum quota 
information associated with it and any of its subdirectories 
is to be copied also. The system default for maximum quota 
information is no limit, i.e., there is no restriction on the 
maximum directory size. “ 

ey 
-RWLOCK, —-RWL eh 

Specifies that COPY is to preserve the read/write locks of the 
source object. The default is to set the read/write locks to” 
the system default. 

  

Note that onl§¥ files (i.e., DAM and SAM) and segm 
directories have user alterable locks, for all other file 
system types copied the read/write locks will have th 

default. § 

  

-COPY_ALL, -CA 

Specifies that COPY is to preserve all the attributes. It is 
the same as specifying "-DTM -PROTECT -QUOTA —RWLOCK”.~ 

FILE SYSTEM UTILITY COMMANDS . page oF 

nes 

    
          



C)
 

1.2.3 Restrictions 

o COPY will not allow the MFD, BOOT, or DSKRAT files of a MFD to 
be overwritten. In order to copy a boot file to a MFD the 
user should first RESTore the new boot to memory and then SAve 
it with the name "BOOT". Note that this restriction does not 
apply when these files exist in other than a MFD 

1.2.4 Usage under password directories 

Under password directories the requirement for access is 
different. In all cases owner access is needed on the target 
directory. Delete access is need on the appropriate file if COPY 
is going to delete it (source if "-DELETE” and/or target if it 
exists). If "-PROTECT” is specified then all the password parts 
of protection are copied. Protection attributes include 
protection keys (files, directories, and segment directories), 
and passwords (directories only) 

The system default for protection keys is rwd nil (owner has all 
rights, nonowner has none); for passwords owner is blank, 
nonowner is null. 

Copying the passwords of a directory requires owner Tights in the 
source directory, if that directory is a password directory. If 
the user does not have owner rights COPY will request the wuUsen’s 
permission to copy the directory. If "-NO_QUERY” was specified, 
the directory will be copied without Tequesting the user’s 
permission. If the directory is copied, it will acquire the 
system default passwords. 

1.3 DELERE 

DELETE will delete files, directories, segment directories, and 
access categories 

Usage: DELETE <target_obyect> [control_arguments...J 

  

   

  

target object 

A standard treename specifying the location and name of the. 
to be deleted. Delete (D) access is required on the 
directory. 

FILE SYSTEM UTILITY COMMANDS . page? 5 

   



CE
 

1.3.1 control arguments 

Zero or more control arguments specified in any order from the 
following list 

-QUERY, -@ 

Specifies that DELETE is to request that the user resolve 
unexpected or potentially dangerous situations. This is the 
default mode of operation 

-NO_QUERY, -N@ Specifies that DELETE is NOT to request the user’s 
permission but to attempt to resolve those situations in the 
most intuitive fashion. 

-REPORT, —RPT 

Specifies that DELETE is to report the results of each 
successful deletion. 

-FORCE 

Specifies that DELETE is to force delete rights for all 
delete-protected objects selected. This argument is most 
useful when deleting a directory tree that may contain delete 
protected objects. This option requires protect (P) access on 
the appropriate directory. 

The default is to request the user’s permission to force 
delete an object, unless "-NO_QUERY" was specified. 

1.3.2 Restrictions 

o DELETE will not delete the MFD, BOOT, or DSKRAT files in a MFD. 
Note that DELETE may be used to delete these files if they 
exist in other than a MFD. 

1.3.3 Implications 

    

o Query will always be requested for directory and ac 
category deletion, unless "-NO_QUERY” was specified. - 

  

o Verification is requested of the wildcards handled by the 
command processor. The command processor option "-NO_VERIFY” 
will suppress this. 

  

FILE SYSTEM UTILITY COMMANDS page 

 



a5 3.4 Usage under password directories 

Under password directories the requirement for access is 

different. In all cases delete access is needed on the target 
object. If the file does not have delete then owner access is 
needed on the target directory 

1.4 

LD displays a directory and, optionally, the various attributes a 

all entries in the directory. The user may select entries based on 
the standard command processor ways and also by how the object 
protected. 

LD = List Directory 

   
Usage: LD [<target_object> [<wild_cards>...J] Ccontrol_arguments... J 

target object 

Specifies both the directory to be listed, and the first wildcard 
name. For example, “a>b>@. list" would specify entries in the 
directory A>B whose names match "@. LIST”. If pathname is omitted, 
"@@" is assumed: that is, all entries in the current directory are 
selected. 

wild cards 

Specify additional wildcard names. An entry is selected if it 
matches either the entryname part of pathname or one of the 

wildcards. 

ny 

Zero of more control arguments specified in any erder from the 

4.1 control arguments 

following list: 

-NO_HEADER, —-NHE 
. i. 

specifies that the header line is not to be output. The * 
header line contains the pathname of the directory listed, the # 

access rights (in parentheses), the records used by this 

    

  directory if available, and the quota used if this is a 
directory. 

“quota”      
—srPeCieit PROTECTED) -SPECP 

  

specifies that those entries that are specific protected wid ly 

be selected. ee 

-DEFAULT_PROTECTED, -DFTP 

: 

| 
specifies that those entries that are default protected will 

FILE SYSTEM UTILITY COMMANDS * _ page  



be selected. 

-CATEGORY_PROTECTED, 

specifies that those entries that are protected by the 

-CATP [<cat_name>] 

eccess 

category "cat_name” will be selected. If "cat_name"” is 
missing then all entries that are protected by access 
categories will be selected. 

-NO_SORT, —NSORT 
¥ 

Specifies that the entries listed not be sorted. The default 
is to sort by ascending NAME within TYPE. TYPEs are always 

sorted according to the order: file, segment directory, 
directory, access category. 

-SORT_DTM, -SORTD z 

specifies that the entries be sorted by descending DTM within 
TYPE, -SORT_NAME must not also be specified. 

-SORT_NAME, -SORTN 

Specifies that the entries be sorted by ascending NAME only 
(not within TYPE). -SORT_DTM must not also be specified. 

-REVERSE, -RV Nd 

Specifies that the sort order be reversed from its ‘default. 
Note that the sort order of TYPEs is never affected. 

-DETAIL, -DET 

Specifies that all attributes be displayed for each entry 
selected. From left to right these are: , 

access Tights available to this user (for password 
directories, the protection keys are displayed). | - 

size of entry in physical disk records. 

quota of entry 

  

ot 

9 

    

in physical disk records (directories’ 
only). 3 

type of entry. BS cage 

Nae “w as 
setting of concurrency lock oh entry (" " for system, ® 9 
"excl" for N readers or 1 writer, "updt" for N readers . 
and 1 writer, and "none" for N readers and N writers). 

all 

incremental dump switch ("dmp" if the entry has been 

dumped).     
delete-protection switch ("pr" if protected). 

  

FILE SYSTEM UTILITY COMMANDS 

  

  



  

date-time modified. 

name of entry. 

and type of protection (name of access category 
protecting entry, or (Specific) for specific protected 
or blank for protected by default); 

The default output format is to list only the name of each 
entry, four across. To print a subset of "detail" format 
information, use one or more of the following options. 

-PROTECT, -PRO 

Specifies that protection information (access mode, 
delete-protect switch, and type of protection) be printed for 
each entry. 

—-DTM 

Specifies that date-time-modified be printed for each entry 

=SIZE 

Specifies that size information (size of entry, quota for 
directories only) be printed for each non-access category 
entry. A size of -1 will be reported for any entry for which 
the user does not have R (or L) permission 

-SINGLE_COLUMN, -SGLCOL 

Is useful only if the default (names only) format is used. In 
this case, specifies that names are to be printed one per line 
instead of four per line. 

  

1.4.2 Usage under password directories y “AE: 

  

Under password directories the access listed is the protection 
keys as owner nonowner. aay 

     
1.5 RWLOCK 

  

RWLOCK will set the read/write concurrency locks for files and 
segment directories.     
Usage: RWLOCK <target_object> [<lock>] [control_arguments 

target object 

FILE SYSTEM UTILITY COMMANDS



to be modified. This command required protect ‘(P) access on the 
target directory. 

lock 
& 

Read/write lock, may be one of the following: : 

SYS - use system read/write lock (default) y 
EXCL - N readers OR 1 writer (exclusive OR) £ yy 
UPDT - N readers AND 1 writer as 
NONE - N readers AND N writers 

  

1.5.1 control arguments 

Zero or more control arguments specified in any order from the 
following list: 

=REPORT) —=RPT. 

Specifies that RWLOCK is to report the results of each 
successful lock change operation. 

1.5.2 Restrictions 

o Only files and segment directories currently have user 

alterable read/write locks. If a wildcard name is specified 
with no file type selection arguments, only files and segment 

directories will be selected. 

1.5.3 Usage under password directories 

Under password directories the requirement for access is 
different. In ell cases owner access is needed on the target 

directory. 

1.6 PROTECT 

Set protection keys for files, directories, and segment 
This command is useful°only in password directories     Usage: PROTECT <target_object> (<owner> [<nonowner>]] 

Ccontrol_arguments...] 

taraet object 

Standard treename specifying the object to be protected. Owner 

access is needed on the target directory. 

  
FILE SYSTEM UTILITY COMMANDS . page  



owner, nonowner 

Protection keys, must be selected from the following list: 

   

  

   

nil - no access (default) rw - read/write acces 
T - Tead- access rd - read/d 
w > write access wd - wri 
d — delete access rwd - ré 

    

   
Note: the order of letters is not important. IE, wd" od 
same as "dw". =" 

If either owner or nonowner is omitted, the default is nil-- 
access. 2 

1.6.1 control arquments 

Zero or more control arguments “specified in any order from the 
following list: Be 

-REPORT, —-RPT y : ae 

Specifies that PROTE rT is to report the results of each 

successful protec 

net 
ee 

+p of is 

1.6.2 nestrictiee af s h 4 

PROTECT petetres protect (P) access in the target directory. es 

operation. 

   
         

  

        

    

  

o Although the PROTECT command may be used 

protection keys of objects in ACL directorie 
ignored when accessing those objects. Bot if % 
were converted back to a password directory, 
protection keys would be in effect. 3 

  

   

    

If a wildcard name is specified with no fil 
arguments, the default will be to select 
and segment directories. :


	Outline
	1
	2
	3
	New Features
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	User Profiles and ACLs
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	Disk Quotas
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	Badspot Handling
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	FIX_DISK Command
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	Bootstrap Procedures
	124
	125
	126
	127
	128
	FUTIL Replacement Commands
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149

